用于c#Aforge录像的Lib,在C#上使用AForge录制摄像头视频,第三方.net视觉开发库,使用AForge第三方库录制本地视频所要使用到的类主要有这几个:FilterInfoCollection、VideoCaptureDevice、VideoSourcePlayer、VideoFileWriter。
2023/7/19 23:39:15 191KB c# Aforge lib 录像
1
UVW平台及其视觉对准系统研究,视觉标定对位在uvw平台的使用及其计算
2023/7/19 23:56:49 11.66MB 视觉标定
1
序言第1章引言1.1引言1.2本书综述第2章运动2.1引言2.1.1运动的关键问题2.2腿式移动机器人2.2.1腿的构造与稳定性2.2.2腿式机器人运动的例子2.3轮式移动机器人2.3.1轮子运动:设计空间2.3.2轮子运动:实例研究第3章移动机器人运动学3.1引言3.2运动学模型和约束3.2.1表示机器人的位置3.2.2前向运动学模型3.2.3轮子运动学约束3.2.4机器人运动学约束3.2.5举例:机器人运动学模型和约束3.3移动机器人的机动性3.3.1活动性的程度3.3.2可操纵度3.3.3机器人的机动性3.4移动机器人工作空间3.4.1自由度3.4.2完整机器人3.4.3路径和轨迹的考虑3.5基本运动学之外3.6运动控制3.6.1开环控制3.6.2反馈控制第4章感知4.1移动机器人的传感器4.1.1传感器分类4.1.2表征传感器的特性指标4.1.3轮子/电机传感器4.1.4导向传感器4.1.5基于地面的信标4.1.6有源测距4.1.7运动/速度传感器4.1.8基于视觉的传感器4.2表示不确定性4.2.1统计的表示4.2.2误差传播:对不确定的测量进行组合4.3特征提取4.3.1基于距离数据的特征提取(激光、超声和基于视觉测距)4.3.2基于可视表象的特征提取第5章移动机器人的定位5.1引言5.2定位的挑战:噪声和混叠5.2.1传感器噪声5.2.2传感器混叠5.2.3执行器噪声5.2.4里程表位置估计的误差模型5.3定位或不定位:基于定位的导航与编程求解的对比5.4信任度的表示5.4.1单假设信任度5.4.2多假设信任度5.5地图表示方法5.5.1连续的表示方法5.5.2分解策略5.5.3发展水平:地图表示方法的最新挑战5.6基于概率地图的定位5.6.1引言5.6.2马尔可夫定位5.6.3卡尔曼滤波器定位5.7定位系统的其他例子5.7.1基于路标的导航5.7.2全局唯一定位5.7.3定位信标系统5.7.4基于路由的定位5.8自主地图的构建5.8.1随机构图的技术5.8.2其他的构图技术第6章规划与导航6.1引言6.2导航能力:规划和反应6.2.1路径规划6.2.2避障6.3导航的体系结构6.3.1代码重用与共享的模块性6.3.2控制定位6.3.3分解技术6.3.4实例研究:分层机器人结构参考文献
2023/7/19 6:11:16 5.64MB 移动机器人
1
单目测距是利用一个摄像头进行视频拍摄,在图像中找到待测物体。
这一系列动作,涉及到了物体的识别,相机的结构,坐标变换的一些知识,距离的获取是一个很广泛的课题,用摄像头来测距是其中一个方向,包括单目测距、双目测距、结构光测距等方法。
2023/7/15 15:34:33 4KB 机器视觉
1
非常好的识别物体的机器视觉程序。
附有完整的说明文档和代码。
代码由matlab写成,并附有测试图片。
图片中含有各种物体,通过数字图像处理的知识,自动识别出图片中的各类物体。
2023/7/15 8:41:35 293KB 识别 物体 机器视觉 程序
1
最近的研究表明,稀疏表示(SR)可以很好地解决许多计算机视觉问题,并且其内核版本具有强大的分类能力。
在本文中,我们解决了协作SR在半监督图像注释中的应用,该方法可以增加标记图像的数量,以进一步用于训练图像分类器。
给定一组标记的(训练)图像和一组未标记的(测试)图像,通常的SR方法(我们称为正向SR)用于用几个标记的图像表示每个未标记的图像,然后根据这些标记的注释的注释。
但是,就我们所知,SR方法是在相反的方向上进行的,即我们称呼后向SR来用几个未标记图像表示每个标记图像,然后根据标记图像的注释对任何未标记图像进行注释,即未标记图像由后向SR选择表示,到目前为止尚未解决。
在本文中,我们探
2023/7/14 21:28:31 768KB Co-training; image annotation; image
1
基于视觉的曲线车道线检测完整代码,采用滑动窗口,详情见博客:http://blog.csdn.net/adamshan/article/details/78733302
2023/7/12 13:22:56 8.15MB 计算机视觉 车道线检测 曲线车道线
1
用于多曝光图像融合,本文算法,利用了人眼视觉识别的特点进行了显著性分析,并以此作为权重进行融合。
2023/7/12 1:30:31 1.43MB 图像融合
1
又一年总攻节的硝烟刚散,各大电商网站连通大小门户平台都经历过一轮铺天盖地的促销与各类花色繁多的相关运营推广活动。
看了好些五彩斑斓的活动页面,结合最近阅读的相关文章和自己参与应用中心活动页设计以来积累的一些不成熟的经验,总结出了关于活动页设计的一些小心得,值此佳节(昂=_=?),希望能抛一些砖并与大家共同寻找玉的存在^^。
活动专题页面,顾名思义是承载各种形式的节庆促销、宣传推广、营销产品发布等等活动的页面,形式与内容也多种多样。
典型的静态活动页面通常使用页头banner+标题再配以活动入口的展示形式,主要以背景、banner和标题字体的视觉处理来烘托整体氛围;
如今也越来越多的活动页会加入游戏等趣
1
目标检测(ObjectDetection)是计算机视觉领域的基本任务之一,学术界已有将近二十年的研究历史。
近些年随着深度学习技术的火热发展,目标检测算法也从基于手工特征的传统算法转向了基于深度神经网络的检测,技术本文总结了近十年来的深度学习目标检测算法
2023/7/11 4:48:13 6.09MB 深度学习 目标检测
1
共 792 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡