关于Proteus仿真ADC0809,说明以下几点:1、在Proteus中,ADC0809是不可仿真的。
但可以用ADC0808代替ADC0809进行仿真。
ADC0808与ADC0809有相同的引脚,功能极为相似。
在Proteus中,可以认为:ADC0808就是ADC0809。
2、说明几个关键引脚的输出信号:1)OE数据输出允许信号,高电屏有效(意思就是,当OE接高电屏时才允许将转换后的结果从ADC0808的OUT1~OUT8引脚输出,否则,在内部锁存)。
2)ADC0808的ALE信号(22引脚),以及START信号(6引脚)ALE称为“地址锁存允许信号”,高电屏有效。
就是说:ALE=1时,允许将ADDA~ADDC的地址输入到ADC0808的内部译码器,经过译码后选定外部模拟量的输入通道。
START信号,这是一个必须重点掌握的信号,向START送入一个高脉冲,其上升沿使ADC0808内部的“逐次逼近寄存器SAR”复位,其下降沿可以*启动A/D转换,并同时使EOC引脚为低电平*(两个*之间的内容必须牢记!)。
应注意到:ALE是高电屏有效,而START的有效部分只是上升沿和下降沿,所以在连接电路时可以将ALE信号与START信号连接到一起,使它们在同一个脉冲上各取所需。
3)EOCAD转换结束的标志信号,在AD转换结束时成现高电屏。
不能通过以下方式使EOC恢复低电屏:假设EOC连到P1.0口上,企图通过CLRP1.0使EOC恢复低电屏是不可行的。
在Proteus仿真时,会出现黄色信号,表示短路。
在实际当中,短路是非常可怕的事情。
千万注意:EOC是靠START的下降沿清零的!4)在Proteus中,ADC0808的时钟信号要用DCLOCK产生(应该知道啥是DCLOCK吧?),因为在Proteus仿真中,当不外接扩展ROM时,单片机的ALE信号(注意,不是ADC0808的ALE信号!)在Proteus仿真中不会出现,因此即使外接74LS74作分频也不会得到时钟信号。
发点牢骚:很多高校都以ADC0809作为AD转换的代表芯片来讲解,但却不细说其工作过程和工作原理。
我们杨红梅老师上课这样说的:“当程序执行到MOVX@DPTR,A的时候,会启动AD转换”。
我不理解为什么执行到这里就启动AD转换了,于是说道:“老师,这里我不理解。
”作为一名十分有责任感的副教授,她是这样回答的:“就是执行到这里就启动了,你还想理解到什么程度?”……令我实在无语。
于是我到校图书馆翻阅了一些相关的高校教材,其各书所述大同小异,也没什么收获,现在的高校教材呀!不得不令人怀疑有抄袭之嫌。
后来,在清华大学出版社出版的《单片机原理与应用及C51程序设计》一书中获得了一些启发,又亲身动手做了仿真,才略懂一二。
对于希望学好单片机的同仁,我有一点小常识奉送,就是:务必学会读懂时序图,即使老师上课不讲,自己也要自学,并学会。
我写的这个程序极其短小,重点在于使读者通过仿真控制理解上述关键信号的作用,进而理解ADC0808的工作过程和工作原理。
为了减少赘余,突出重点,并没有用单片机对AD转换后的数字信号行处理,而是通过ADC0808的OUT1~OUT8引脚直接输出。
希望看过此例的同仁能通过此例真正学懂ADC0808(也即是:ADC0809)。
相关的时序图,百度上有丰富的资源,在这里就不赘赠了,请见谅。
2016/5/5 21:26:50 37KB Proteus AD转换 单片机
1
同步电机模型的MATLAB仿真-毕业设计论文.pdf同步电机模型的MATLAB仿真-毕业设计论文.pdf同步电机模型的MATLAB仿真-毕业设计论文.pdf同步电机模型的MATLAB仿真-毕业设计论文.pdf相关书目通信技术256GSM手机维修培训教程257OHM科学丛书图解B-ISDN宽带综合业务数字网258可视图文业务网259通信基础知识260现代通信系统原理261射频通信电路262综合业务数字网导论263综合宽带接入技术264宽带城域建设与管理265专用移动通信网组网技术及维护266渔业电子技术丛书单边带通信原理267中等职业学校电子信息类教材(通信技术专业)手持移动电话原理与维268有线电视模拟-数字光纤与微波传输技术269异步转移模式——ATM技术及应用270异步传递方式宽带ISDN技术271移运通信前尚技术丛书软件无线电原理与应用272移动通信前沿技术丛书GSM网络与GPRS273曜高技术普及丛书虚拟专用网274现代移动通信技术丛书蓝牙协议及其实现275无线寻呼机(BB机)原理与维修276无线寻呼系统277无线电寻呼和无绳通信278卫星数字电视接收机的使用与维修279微机通信指南280微机通信原理与实用技术281微波与光导波技术282网络与信息安全技术丛书电子商务站点黑客防备283同步数字体系(SDH)技术及其应用284完全手册系列丛书MODEM完全手册285网络与通信译林精选系列ADSL/VDSL原理286通信原理与技术287通信原理(第4版)288通信网原理及其实现技术289锁相与频率合成技术290数字移动通信及ISDN291数字移动电话机原理及维修技术292数字卫星电视接收技术293数字微波中继通信及设备294数字通信:第三版295实用卫星电视接收技术——原理、安装、测试和检修296时分双工CDMA移动通信技术297时尚数字手机原理与维修(二)298雷达原理(修订版)299全国高技术重点图书·通信技术领域信号复制生成理论及应用300全国高技术重点图书·通信技术领域编码密码学301宽带无线接入和无线局域网302宽带网络技术及测试303宽带Zooe丛书xDSL技术与应用304宽带Zone丛书宽带接入技术305纠错编码技术和应用306精通串行通信307介质光波导器件原理308集成锁相环路原理特性应用309国家自然科学基金资助项目综合业务数字网与异步转移模式ISDN310光纤通信设计311光纤接入网技术312光纤技术及应用313蜂窝移动通信——模拟和数字系统314分组变换技术及其应用315调制解调器实用技术316调制解调器初学者指南317电子数据交换(EDI)系统工作原理及标准318cdma2000技术319GSM原理及其网络优化320通信流理论基础与多媒体通信网321现代通信网和计算机网管理322信息高速公路实用教材宽带网络技术及其应用323信息编码技术及其应用大全324异步传递方式宽带ISDN技术325GSM标准326第三代移动通信系统原理与工程设计IS-95CDMA和cdma2000
2017/4/22 5:40:47 570KB 电机 MATLAB 仿真 毕业设计
1
1光纤通信概论11.1光纤通信的发展史11.2光纤通信系统32光纤62.1概述62.2光线在光纤中的传输92.2.1阶跃光纤中的光线分析92.2.2梯度光纤中的光线分析102.2.3平面光波导132.3光纤的波动理论172.3.1波动方程172.3.2归一化变植182.3.3贝塞尔方程的场解192.3.4特征方程212.3.5线偏振校及其特性222.3.6传播常数卢与归一化频率V的关系242.3.7光纤中的功率流252.3.8单模光纤262.4光纤的损耗特性292.4.1材料的吸收损耗302.4.2光纤的散射损耗312.4.3辐射损耗312.5光纤的色散特性及带宽322.5.1群时延和时延差332.5.2材料色散和波导色散332.5.3高斯脉冲在单橾光纤中的传播382.5.4偏振栈色散402.5.5模间色散412.5.6光纤的传输带宽412.6单模光纤中的非线性效应432.6.1媒质中的仆线性效应432.6.2光纤中的受激散射效应442.6.3非线性折射率调制效应462.6.4光脉冲在光纤中的传输方程472.7光纤光栅482.7.1基本工作原理482.7.2耦合模理论及布拉格光栅的滤波特性502.7.3嘱啾光纤光栅532.7.4长周期光纤光栅542.7.5抽样光栅552.7.6光纤光栅在光纤通信中的应用552.8无源光器件572.8.1光纤的连接与光纤连接器582.8.2光纤分路器及耦合器582.8.3GR1N透镜连接器602.8.4光隔离器与光环行器602.8.5光开关612.9聚合物光纤与光子晶体光纤简介642.9.1聚合物光纤642.9.2光子晶体光纤65习题683光源与光发送机703.1半导体中的光发射713.1.1光的吸收与发射713.1.2半导体的光发射743.2发光二极管783.2.1发光二极管的结构783.2.2发光二极管的主要特性803.3半导体激光器的工作原理与结构833.3.1半导体激光器的工作原理833.3.2半导体激光器的结构873.4半导体激光器的工作特性933.4.1P-1特性933.4.2模式特性与线宽963.4.3调制特性973.4.4波长调谐特性1023.4.5噪声特性1033.4.6半导体激光器的安全使用1053.5光发送机1053.5.1光载波的调制1063.5.2发光二极管驱动电路1063.5.3激光二极管驱动电路1083.5.6光源与光纤的耦合1103.5.7光源的外调制技术112习题1144光检测器与光接收机1164.1概述1164.2光检测器1174.2.1光检测器的工作原理1174.2.2光检测器的主要工作持性1224.3光接收机的噪声1254.3.1光接收机中的噪声源1254.3.2接收机等效电路及放大器电路噪声1274.3.3光检测器的噪声1284.3.4背景噪声1314.4模拟接收机的噪声及信噪比1324.4.1均方信号电流1324.4.2光检测器噪声1324.4.3信噪比及接收灵敏度1334.5数字接收机的噪声分析1354.5.1概述1354.5.2数字接收机的分析模型1364.5.3信号分析1374.5.4放大器电路噪卢1384.5.5光检测器噪声1384.5.6输入输出脉冲外形及/1/2/3~1值1404.6光接收机前置放大器1454.6.l高阻抗前置放大器1464.6.2互阻抗放大器1524.6.3动态范围1544.7数字接收机的误码率和接收灵敏度1564.7.1数字接收机的误码率1564.7.2数字接收机的接收灵敏度1594.7.3数字接收机的灵敏度极限一量子极限1634.8数字接收机中的定时提取与判决再生1644.8.1定时提取1644.8.2判决再生165习题1665光放大器1685.1光放大器简介及其一般特性1685.1.1半导体光放大器(SOA)1685.1.2掺饵光纤放大器(EDFA)1705.1.3光纤喇曼放大器(1BA)1705.1.4光放大器一般工作特性1705.1.5
2016/8/26 19:29:08 14.7MB 光纤通信
1
TensorFlow内核剖析TensorFlowInternals刘光聪著本书定位这是一本剖析TensorFlow内核工作原理的书籍,并非讲述如何使用TensorFlow构建机器学习模型,也不会讲述应用TensorFlow的最佳实践。
本书将通过剖析TensorFlow源代码的方式,揭示TensorFlow的系统架构、领域模型、工作原理、及其实现模式等相关内容,以便揭示内在的知识。
面向的读者本书假设读者已经了解机器学习相关基本概念与理论,了解机器学习相关的基本方法论;同时,假设读者熟悉Python,C++等程序设计语言。
本书适合于渴望深入了解TensorFlow内核设计,期望改善TensorFlow系统设计和功能优化,及其探究TensorFlow关键技术的设计和实现的系统架构师、AI算法工程师、和AI软件工程师。
2020/1/14 6:26:52 21.27MB tensorflow
1
本书是为那些想了解Linux内核工作原理的Linux狂热爱好者而写它并非一本内部手册主要描叙了Linux设计的原理与机制以及Linux内核怎样工作及其原因Linux还在不断改进本书基于目前比较流行且功能稳定的2.0.33核心
2021/8/9 12:29:28 1.19MB linux
1
在嵌入式电路设计中,常用到的元器件,场效应晶体管(MOS管)的基础知识引见,P-MOS、N-MOS的区别,以及在电路中的工作原理。
2019/3/7 21:16:22 2.46MB 硬件电路基础
1
动式红外线报警器的简易制造方法:本实验将制做一个简单的被动式红外线防盗报警器。
该报警器由红外线发射、接收、蜂鸣器和LED指示灯组成。
正常情况下,绿色的LED常烁,表示监控区域正常。
一旦监控区域有人闯入,绿色LED熄灭,红色的LED快速闪烁,同时蜂鸣器立即报警。
该电路工作原理非常简单,Atmega8的PD0端口输出经过调制的38KHZ的方波信号,然后经Q2驱动红外线发射管LED0发出红外线信号。
TL0038是集红外线信号接收放大为一体的接收器。
其中心接收频率为38KZH,输出为TTL电平,平时输出高电平,当收到码信号后,输出低电平。
2016/8/6 7:33:45 96KB 红外蜂鸣器的资料
1
课程设计报告+使用说明+源码摘要1一、引言21.1FTP工作原理21.2C/S原理3二、系统需求分析32.1功能需求32.3系统工作流程设计4三、系统详细设计53.1次要模块设计:53.2界面设计:7四、系统测试10五、系统使用说明115.1程序说明115.2操作流程11六、心得体会12
2015/4/2 19:20:44 440KB FTP
1
详细给出了模糊自顺应PID控制的Matlab仿真代码,该代码可直接在Matlab平台下运行,仿真结果可直观的看出模糊控制的基本工作原理与控制效果。
该实例为本科设计、硕士论文以及其他学术论文的仿真实验工作提供了一个基本的案例。
2019/1/27 18:22:32 5KB 模糊控制 PID控制 Matlab 仿真代码
1
电力电子技术学习初期需要了解二极管不可控整流电路工作原理,设计好滤波电路,保证搞功率因数运转是基本条件,本资源提供二极管不可控整流电路的设计模型以供初学者学习
1
共 482 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡