MATLAB实现H.264视频读取帧间预测分块类型比较
2024/4/28 10:38:03 11.59MB H.264 编码 帧间预测 分块类型
1
kerastensorflowlstm多变量序列的预测+数据文件,源代码
2024/4/28 0:10:27 921KB lstm
1
运用地统计学进行空间分析基本包括以下几个步骤,即数据探索性分析,空间连续性的量化模型,未知点属性值的估计,对未知点局部及空间整体不确定性的预测。
2024/4/27 1:54:01 348KB 空间异质性
1
基于CNN训练的年龄和性别预测的二进制模型、描述文件、标签文件。
2024/4/26 22:31:54 81.14MB CNN 年龄预测模型 性别预测模型
1
论文+翻译+PPT+代码+动画视频PoseCNN:AConvolutionalNeuralNetworkfor6DObjectPoseEstimationinClutteredScenes;
 机器人与现实世界进行交互时,对已知目标的6D姿态估计至关重要。
由于对象的多样性,以及由于对象之间的杂波和遮挡而导致场景的复杂性,使得该问题具有挑战性。
本文介绍了一种用于6D目标姿态估计的新型卷积神经网络PoseCNN。
PoseCNN通过在图像中定位物体的中心并预测其与摄像机的距离来估计物体的三维平移。
通过回归到四元数(w,x,y,z)表示来估计物体的三维旋转。
2024/4/26 2:23:44 26.44MB 6D Pose ICP
1
matlab实现的计算但标签分类聚类准确率的计算代码。
函数包含两个参数groundtruth以及分类/聚类模型给出的预测标签向量
2024/4/26 2:26:01 643B matlab
1
使用emd进行回归预测的代码,使用方法结单,只需输入训练集和测试集就可以进行emd预测了,预测的结果会保存在相应的.mat文件里,详细操作请看代码里的操作说明。
资源里有demo,guidence.m文件里有调用实例,直接复制到commandwindows里运行就可以了,简单易懂,汉语注释说明等。
运行结果会直接输出测试集的MAE,RMSE,MAPE,DISTAT这几个统计量
2024/4/25 9:55:47 4KB elm MAE RMSE MAPE DISTAT
1
这是一个用ANN(人工神经网络)对手写数字进行识别的程序。
有以下一些特性:1)前端(网页)用JavaScript,html5,css开发;
2)后端(服务器)用python写的(2.7版本);
3)功能:#支持在网页画布上(用鼠标)写数字,并会返回预测结果;
#支持重置网页画布;
#支持向服务器发送训练样本;
#支持图片预览,图片上传;
#支持对上传的图片中英文字母的识别。
这是一个非常酷的程序,C/S架构,代码也不是很复杂,而且设计了一些很有趣的知识(机器学习,神经网络,http数据传递,前后端开发等等)。
感兴趣的同学可以下载下来看一看,有不懂的可以评论留言。
2024/4/25 9:05:03 5.8MB OCR ANN神经网络 python开发 js+css+html
1
本程序是matlab稀疏贝叶斯小程序,用于处理数据,进行数据稀疏化处理的参数型预测。
2024/4/25 5:52:05 871KB 电气 数据处理 预测
1
预测控制课程详细建议,包含DMC,MAC,Gpc和MPC等各类算法介绍
2024/4/24 22:50:44 198KB 预测控制 matlab
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡