本次课程设计通过编写和调试一个仿真模拟银行家算法避免死锁的程序,观察产生死锁的条件,并采用银行家算法,有效地避免死锁的发生。
这是我们的操作系统课程设,用.net做的。
银行家算法避免死锁,其中有三个模块,欢迎界面、主窗体、安全性检查窗体。
略过欢迎界面不说,主窗体包括可利用资源的初始化、添加进程、申请资源。
在申请资源后点击确定,会进入副窗体,父窗体上面显示分配资源的分配情况,可以进行安全性检查,如果存在安全序列,则分配资源,否则不分配资源。
点击父窗体的返回按钮就会回到主窗体,可以再次申请资源,或者添加进程。
2024/1/24 19:06:41 1.95MB 操作系统 课程设计 银行家算法 C#
1
非常强大的代理商代理是轻量级微服务,具有使用ZeroMQ的内置进程间通信基础结构文献资料特征代理商正常启动和关闭,并正确完成资源清理用户设置/关机替代方法可正常启动和关闭使用队列以线程安全的方式完成ZeroMQ通信(ZeroMQ不是线程安全的)使用RxPy通过Observables接收套接字数据使用self.log格式良好的日志强大的代理商发布/订阅通知设施路由器/客户端设施用于标准设施(通知,客户端等)的简单消息协议椭圆曲线加密和认证生产就绪的通信架构网状网络(TODO)...(去做)非常强大的特工REST服务器路由(TODO)RPC端点(TODO)文件共享(TODO)...(去做)#installfromgitgitclonehttps://github.com/shirecoding/VeryPowerfulA
2024/1/24 5:41:39 33KB Python
1
WPF中用于嵌入其他进程窗口的自定义控件(AppContainer)具体见博文:http://blog.csdn.net/zzzwwwppp11199988899/article/details/78131292
2024/1/23 16:15:20 392KB wpf 控件 嵌入外部进程
1
电子科技大学操作系统进程管理过程模拟基于python编写,有问题csdn交流。
2024/1/23 9:07:10 3KB python 操作系统
1
3GPP长期演进(LTE)技术原理与系统设计.pdf添加了完整的书签支持跳转方便阅读比csdn上提供的带书签的这个版本清晰封面1序言4前言6目录8第1章 背景与概述141.1 什么是LTE141.2 LTE项目启动的背景151.2.1 移动通信与宽带无线接入技术的融合151.2.2 国际宽带移动通信研究和标准化工作161.2.3 我国宽带移动通信研究工作181.3 3GPP简介181.3.1 3GPP的组织结构191.3.2 3GPP的工作方法201.3.3 3GPP技术规范的版本划分211.4 LTE研究和标准化工作进程251.4.1 LTE项目的时间进度251.4.2 LTE协议结构271.5 LTE技术特点291.5.1 LTE需求291.5.2 系统架构301.5.3 空中接口311.5.4 移动性和无线资源管理361.5.5 自配置与自优化371.5.6 和LTE相关的其他3GPP演进项目371.6 LTE和其他宽带移动通信技术的对比401.6.1 性能指标对比401.6.2 关键技术对比421.7 小结44参考文献44第2章 LTE需求452.1 系统容量需求462.1.1 峰值速率462.1.2 系统延迟462.2 系统性能需求472.2.1 用户吞吐量与控制面容量472.2.2 频谱效率482.2.3 移动性492.2.4 覆盖492.2.5 进一步增强的MBMS492.2.6 网络同步502.3 系统部署需求512.3.1 部署场景512.3.2 频谱扩展性512.3.3 部署频谱512.3.4 与其他3GPP系统的共存和互操作522.4 对无线接入网框架和演进的要求522.5 无线资源管理需求532.6 复杂度要求532.6.1 系统复杂度532.6.2 UE复杂度532.7 成本要求542.8 业务需求542.9 小结54参考文献55第3章 LTE物理层协议563.1 物理层概述563.1.1 协议结构563.1.2 物理层功能573.1.3 LTE物理层协议概要介绍573.2 物理信道与调制593.2.1 帧结构593.2.2 上行物理信道613.2.3 下行物理信道773.2.4 伪随机序列产生1023.2.5 定时1023.3 复用与信道编码1023.3.1 物理信道映射1023.3.2 信道编码和交织1033.4 物理层过程1243.4.1 同步过程1243.4.2 功率控制1243.4.3 随机接入过程1273.4.4 PDSCH相关过程1273.4.5 PUSCH相关过程1313.4.6 PDCCH相关过程1333.4.7 PUCCH相关过程1333.5 物理层测量1343.5.1 UE/E-UTRAN测量概述1343.5.2 UE/E-UTRAN测量能力134参考文献136第4章 LTE无线传输技术1384.1 双工方式1384.1.1 FDD双工方式1384.1.2 TDD双工方式1384.1.3 H-FDD双工方式1394.2 宏分集的取舍1404.2.1 宏分集技术在WCDMA中的应用情况1414.2.2 LTE系统对宏分集的取舍1424.3 下行多址技术1434.3.1 OFDMA技术方案1434.3.2 VSF-OFDM技术方案1484.3.3 OFDM/OQAM技术方案1514.3.4 多载波WCDMA(MC-WCDMA)技术方案1534.3.5 多载波TD-SCDMA(MC-TD-SCDMA)技术方案1564.3.6 下行多址技术的确定1564.4 上行多址技术1564.4.1 PAPR和立方量度(CubicMetric,CM)问题1574.4.2 采用PAPR降低的OFDMA(OFDMAwithPAPRReduction)技术方案1584.4.3 单载波频分多址(SC-FDMA)技术方案1604.4.4 单载波和频域均衡(SC-FDE)技术方案1614.
2024/1/23 9:26:20 42.69MB 3GPP长期演进 LTE 书签
1
一、 题目要求1.所有就绪进程按FCFS排成一个队列,总是把处理机分配给队首的进程2.模拟短进程调度算法,要求可以自动产生或者手动输入若干进程的名字、到达时间、运行时间;
输出中间每个进程的运行状态,最后产生完成时间、周转时间、带权周转时间的汇总清单
2024/1/23 8:30:08 913KB 操作系统 进程
1
目的:在进程控制、请求分页存储器管理、设备管理基础上实现按先来先服务FCFS、短作业优先SJF以及时间片轮转算法调度进程的模拟过程。
内容1.在第13部分基础上扩展;
2.支持FCFS、短作业优先以及时间片调度算法。
3.能够较方便地查看调度过程及平均周转时间、平均带权周转时间。
4.支持优先权调度算法与其它算法相结合的调度模式。
5.调度时应适当输出调度过程中各进程状态队列的变化情况以及进程的已执行时间、还需服务时间(针对时间片轮转算法)。
6.完成银行家算法的实现。
2024/1/23 7:43:48 341KB 操作系统 进程调度
1
本文是个大杂烩,内容为日常点滴的日积月累,持续更新当中,可关注博客(https://blog.csdn.net/Aquester或http://aquester.blog.chinaunix.net),查看最新版本。
文中的内容,可帮忙开发提升分析和定位各类问题,比如找出导致IO负载高的进程等,以及一些简单的运维工作等。
2024/1/23 5:30:13 655KB htop nethogs fuser iotop
1
程序名称:服务器/客户端程序功能:1.客户端登录到服务器;
2.客户端在服务器注册3.客户端与服务器交流运行环境:linux备注:程序编写后,运行在两个虚拟机之上,运用多进程,允许多个客户端连接,客户端退出交流时输入exit,服务器再输入exit即可。
注册功能需要在服务器端新建一个userlist的文件,新注册的用户信息也写入在该文件中。
2024/1/20 0:50:13 7KB C/S
1
每个进程有一个进程控制块(PCB)表示。
进程控制块可以包含如下信息:进程名、优先数、到达时间、需要运行时间、已用CPU时间、进程状态等等。
进程的优先数及需要的运行时间可以事先人为地指定(也可以由随机数产生)。
进程的到达时间为进程输入的时间。
进程的运行时间以时间片为单位进行计算。
每个进程的状态可以是就绪W(Wait)、运行R(Run)、或完成F(Finish)三种状态之一。
就绪进程获得CPU后都只能运行一个时间片,运行后已占用CPU时间加1。
如果运行一个时间片后,进程的已占用CPU时间已达到所需要的运行时间,则撤消该进程,如果运行一个时间片后进程的已占用CPU时间还未达所需要的运行时间,也就是进程还需要继续运行,此时应将进程的优先数减1(即降低一级),然后把它插入就绪队列等待CPU。
每进行一次调度程序都打印一次运行进程、就绪队列、以及各个进程的PCB,以便进行检查。
2024/1/19 21:17:22 3KB 最高优先数优先的调度算法
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡