联华众科CPLD开发板CA127核心器件为AlteraMAXII系列的EPM1270,CA127具有丰富的板载资源,由于板载有51单片机,CA127还可以作为51单片机的学习开发板。
CA127实现了3.3V系统与5V系统对接功能,具体是通过74LVXC3245(或简称3245)实现的。
CA127随板资料中包括丰富的开发实例和制作开发实例的详细步骤说明,以及QuartusII环境下的设计输入,综合,仿真等内容。
2023/7/13 8:47:32 11.55MB CA127 用户手册 CPLD 联华众科
1
基于51单片机的MLX90614红外测温仪实验指导书(含源代码)MLX90614MLX90615红外测温51单片机SMBus这是经过本人实验测试得到的成果,再次将之分享给大家,希望对搞温度测量及控制的人有所帮助!时钟线数据线温度显示第个数码管段选温度显示第个数咼管段迮温度显示第个数码管段选矩阵键盘第列矩阵键盘第列矩阵键盘第列矩阵键盘第行矩阵键盘第行矩阵键盘第行数据定义可位寻址数据数码管码值定义显示代码,共阳不带小数点的显示代码,共阳带小数点的仝局变量定义定时标志位定时毫秒数向写入命令或数据数据清屏光标返回原点设置显示模式显示开显示关显示光标无光标光标闪动光标不闪动设置输入模式光标石移默认光标左移田面可半移默认画面不移动命令模式对操作操作进入命令模式退出命令模式读标志进入睡眠馍式地址(只读)周围温度环境温度单元目标温度红外温度单元地址测量范围上限设定测量范围下限设定设定环境温度设定频率修正系数配置寄存器器件地址设定保留保留地址地址地址地址函数声明发起始位子程序发结東位子程序接收字节子程序发送位子程序接收字节子程序接收位子程序延时程序读温度数据初始化子程序判断忙子程序写命令子程序写数据子程序显示子程序字符串显示程序主函数温度变量初始化每扫描一次键盘按下键时,进行数码管显示液品屏显示读取温度清屏显示字符串且换行显示温度显示摄氏度延吋再读取温度显字符串显示稈序字符串显示程序直到字符肀结束转成码指向下一个字符输入转换并显示用于温度为止温度整数温度小数温度超过度显示温度百位显小温度十位显示温度个位温度超过度显小温度十位显示温度个位温度不超过度显示温度个位显示小数点温度小数点后第位数不等于显示温度小数点后第位数显示温度小数点后第位数温度小数点斤第位数等于显示温度小数点后第位数显示温度小数点后第位数温度为负
2023/7/12 22:10:43 125KB MLX90614 MLX90615 红外测温 51单片机
1
本课程设计要求设计一种多波形产生电路,该电路主要由信号的运算与处理电路,它主要由信号产生电路、信号运算电路、信号处理电路构成。
多种波形的产生就是使用各种基本的电子元器件对电信号产生,运算,处理等电路。
具体应用了555芯片、74LS74芯片、LM324运放芯片。
555芯片是一个可以产生多谐振荡的芯片,配合其他电子器件可以产生方波等。
74LS74是以个有着四个双D触发器的芯片,我们可以把它连接为一个四分频的电路;
RC积分器就是使用电容的充放电对方波积分产生三角波;
LM324是有四个运放的芯片,我们可以使用这些运放器构成低通滤波电路,和振荡器产生正弦波。
本次课程设计的目是1.使用555时基电路产生频率20kHz-50kHz连续可调,输出电压幅度为1V的方波Ⅰ。
2.使用数字电路74LS74,产生频率5kHz-10kHz连续可调,输出电压幅度为1V的方波Ⅱ。
3.使用数字电路74LS74,产生频率5kHz-10kHz连续可调,输出电压幅度峰峰值为3V的三角波。
4.产生输出频率为20kHz-30kHz连续可调,输出电压幅度峰峰值为3V的正弦波Ⅰ。
5.产生输出频率为250kHz,输出电压幅度峰峰值为8V的正弦波Ⅱ。
2023/7/12 9:08:09 775KB z'z
1
现代直流伺服控制技术及其系统设计目录代序言前言第1章绪论1直流伺服控制技术的发展2现代直流PWM伺服驱动技术的发展2.1国内外发展概况2.2直流PWM伺服驱动装置的工作原理和特点2.3功率控制元件的应用及控制电路集成化2.4PWM系统发展中待研究的问题3现代伺服控制技术展望第2章不可逆直流PWM系统1无制动状态的不可逆PWM系统1.1电流连续时PWM系统控制特性分析1.2电流断续时PWM系统控制特性分析2带制动回路的不可逆PWM系统第3章可逆直流PWM系统1双极模式可逆PWM系统1.1T型双极模式PWM控制原理1.2H型双极模式PWM控制原理1.3双极模式PWM控制特性分析2单极模式可逆PWM系统2.1H型单极模式同频可逆PWM控制2.2H型单极模式倍频可逆PWM控制3受限单极模式可逆PWM系统3.1受限单极模式同频可逆PWM控制系统3.2工作特性的定量分析3.3计算机辅助分析3.4受限单极模式倍频可逆PWM控制4控制方案的对比第4章PWM功率转换电路设计1PWM功率转换用GTR1.1开关特性1.2GTR的功率损耗及PWM功率转换电路对其特性的要求1.3GTR存储时间对PWM系统的影响2GTR的损坏和保护2.1GTR的耐压与损坏2.2GTR的二次击穿和安全工作区2.3GTR暂态保护3达林顿复合型功率模块的应用3.1复合型达林顿模块的电路结构3.2达林顿模块作为开关使用3.3达林顿模块并行驱动3.4达林顿模块的应用4缓冲器设计和负载线整形4.1缓冲器的必要性4.2负载线分析4.3在PWM系统中的缓冲器设计举例第5章PWM系统控制电路1脉宽调制器的一般特性及电路1.1脉宽调制器的一般特性1.2恒频波形发生器1.3脉宽调制器2保护型脉宽调制及脉冲分配电路2.1双门限延迟比较的V/W电路2.2二极管电桥反馈式窗口V/W电路2.3具有阻容延迟的PWM变换电路2.4脉冲分配逻辑延时电路3保护电路3.1电流保护型式与特点3.2保护电流的实时取样和霍尔效应电流检测装置设计3.3欠电压、过电压保护3.4瞬时停电保护3.5保护电路举例4基极驱动电路4.1基极恒流驱动4.2基极电流自适应驱动电路4.3自保护型基极驱动电路4.4典型基极驱动电路5控制电路集成化、模块化5.1一种新型SG1731型PWM集成电路5.2晶体管驱动模块简介5.3应用举例第6章PWM系统工程设计中的有关问题1功率转换电路供电电源的设计问题1.1泵升电压对功率转换电路及供电电源的影响1.2PWM系统中的反馈能量1.3反馈能量的存储及其耗散2PWM系统电流波形系数与电动机的有效出力3PWM开关频率的选择4电枢回路附加电感的设计原则5浪涌电流和电压抑制5.1合闸浪涌电流的抑制5.2浪涌电压吸收第7章PWM系统电磁兼容性设计1电磁干扰模型分析和干扰传递1.1干扰源1.2敏感单元1.3干扰传递方式2抑制或消除干扰的方法2.1PWM功率转换电路中GTR开关干扰源抑制2.2元器件的合理布局与布线2.3接地设计2.4屏蔽与隔离2.5滤波3PWM系统电磁兼容性设计导则3.1电源3.2电动机3.3GTR固态开关3.4开关控制器件3.5模拟电路3.6数字电路3.7微型计算机第8章现代直流伺服控制元件与
2023/7/12 3:46:22 13.04MB 直流伺服 控制 系统设计 秦继荣
1
原始代码,改动一下引脚就能使用,包括计数器,译码器,扫描,数码管显示,超级详细注解,对FPGA的学习直接指导,例化使用几个器件的连接,欢迎互相学习。
2023/7/11 16:23:46 3.42MB FPGA 计数器 译码器 数码管
1
FPGA可编程成逻辑器件设计OFDM。
加扰,交织,循环前缀,fft,映射,等核心关键技术。
内部附有源代码。
2023/7/11 13:14:24 4.03MB FPGA
1
本低频数字式相位测量仪基于多周期同步计数法和DDS原理,以89C55单片机为控制核心,现场可编程逻辑器件(FPGA)为处理核心,由数字式移相信号发生器、移相网络、相位测量仪三部分组成,整个系统具有极高的性价比。
其中,移相信号发生器采用14位高精度数模转换器DAC904,其输出信号幅度范围为10mV~9VP-P,频率为0.1Hz~3MHz时无明显失真,输出相位差为0°~359.95°。
相位测量采用MAX913比较器芯片,测量范围为1Hz~500kHz,远超题目要求。
移相网络的连续移相范围为-45°~+45°,达到了预定要求。
整个系统模块化程度好、集成度高,具有友好人机交互界面且易于外部功能扩展。
关键词:DDS移相信号 移相网络 相位测量
2023/7/10 9:05:21 461KB 低频 数字式 相位测量仪
1
fx3USB3.0开发板ALTIUM设计原理图+相关器件手册资料
1
AltiumDesigner2D3D元件库PCB封装库37MB400个常用器件封装,三维PCB封装库,基本上可以满足你的项目设计需求。
1
MCP41XXX和MCP42XXX器件是具有256个抽头的数字电位器,有10kΩ、50kΩ和100kΩ3种电阻选择。
MCP41XXX是单通道器件,有8引脚PDIP和SOIC两种封装形式。
2023/7/5 19:07:17 1.41MB 数字电位器中文资料 MCP41/42
1
共 716 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡