在遥感领域,数据集是研究和开发的关键资源,它们为模型训练、验证和测试提供了必要的数据。
"高光谱和LiDAR多模态遥感图像分类数据集"是这样一种专门针对遥感图像处理的宝贵资源,它结合了两种不同类型的数据——高光谱图像和LiDAR(LightDetectionandRanging)数据,以实现更精确的图像分类。
高光谱图像,也称为光谱成像,是一种捕捉和记录物体反射或发射的光谱信息的技术。
这种技术能够提供数百个连续的光谱波段,每个波段对应一个窄的电磁谱段。
通过分析这些波段,我们可以获取物体的详细化学和物理特性,例如植被健康、土壤类型、水体污染等,这对环境监测、城市规划、农业管理等有着重要的应用。
LiDAR则是一种主动遥感技术,它通过向地面发射激光脉冲并测量回波时间来计算目标的距离。
LiDAR数据可以生成高精度的地形模型,包括地表特征如建筑物、树木和地形起伏。
此外,LiDAR还能穿透植被,揭示地表覆盖下的特征,如地基和地下结构。
这个数据集包含了三个不同的地区:Houston2013、Trento和MUUFL。
每个地区可能对应不同的地理环境和应用场景,这为研究者提供了多样性的数据,以便他们在不同条件和场景下测试和比较分类算法的效果。
数据集的分类任务通常涉及识别图像中的各种地物类别,如建筑、水体、植被、道路等。
多模态数据结合可以显著提升分类的准确性,因为高光谱数据提供了丰富的光谱信息,而LiDAR数据则提供了高度精确的空间信息。
将这两者结合起来,可以形成一个强大的特征空间,帮助区分相似的地物类别,减少分类错误。
在实际应用中,这个数据集可以用于训练深度学习或机器学习模型,比如卷积神经网络(CNN)。
通过在这样的多模态数据上训练,模型能够学习到如何综合解析光谱和空间信息,从而提高对遥感图像的分类能力。
对于研究人员和开发者来说,这个数据集提供了理想的平台,用于开发新的图像分析技术,改进现有算法,并推动遥感图像处理领域的创新。
"高光谱和LiDAR多模态遥感图像分类数据集"是一个涵盖了多种地理环境和两种互补遥感技术的宝贵资源,对于理解地物特性、提升遥感图像分类精度以及推动遥感技术的发展具有重大价值。
通过深入研究和利用这个数据集,我们可以期待在未来实现更加智能化和精确化的地球表面监测。
2024/10/9 21:43:17 185.02MB 数据集
1
CAE,CNN,NN,SAE等等matlab版深度学习算法合集,以及相关测试数据,拿到就能直接用。
2024/9/29 12:11:21 28.34MB DeepLearning 合集 算法 深度学习
1
一本不错的讲述CNN的基本工作原理和相关CNN网络结构的手册
2024/9/13 12:11:10 6.9MB 卷积神经网络
1
目的:使用CNN卷积神经网络实现语音识别步骤:(1)预处理。
首尾端的静音切除,降低对后续步骤造成的干扰,然后进行声音分帧,把声音切开成帧,,各帧之间一般是有交叠。
(2)特征提取。
运用的算法为倒谱系数(MFCC),把每一帧波形变成一个包含声音信息的多维向量;
(3)RNN模型训练。
有了特征,就可以使用TensorFlow完成模型的建立和训练了。
(4)验证模型。
目标:对相应的声音数据进行分类,例如数据的是数数的数据,能够输出对应的数字。
2024/9/7 10:11:28 5KB cnn 语音识别
1
CNN卷积神经网络tensorflow代码,使用MNIST数据集,安装好python和TensorFlow可直接运行
1
MatConvNet是一个实现卷积神经网络(CNN)的MATLAB工具箱,用于计算机视觉应用。
用这个工具箱,能很方便地在MATLAB中用GPU来进行训练。
2024/8/30 4:46:30 1.87MB MATLAB CNN
1
某位大牛在github上分享的CNN车牌识别源代码,在将其装到Windows的Python下运行时碰到了各种报错(WIN8下python3.6,Opencv3.0),有些问题搜遍网络也没找到解决方法。
最后终于调通,可以进行训练和预测。
不过训练的收敛速度不太理想,有待继续研究。
分享出来给有兴趣的同学,或许可少走些弯路。
2024/8/23 1:48:42 14.78MB CNN
1
CNN识别手写数字,很好的机器学习初心者学习资料,里面包含了MATLAB代码和详细的注释,可以直接运行
2024/8/20 3:10:04 14.03MB CNN 手写识别 数字识别 手写数字识别
1
反向传播算法是人工神经网络训练时采用的一种通用方法,在现代深度学习中得到了大规模的应用。
全连接神经网络(多层感知器模型,MLP),卷积神经网络(CNN),循环神经网络(RNN)中都有它的实现版本。
算法从多元复合函数求导的链式法则导出,递推的计算神经网络每一层参数的梯度值。
算法名称中的“误差”是指损失函数对神经网络每一层临时输出值的梯度。
反向传播算法从神经网络的输出层开始,利用递推公式根据后一层的误差计算本层的误差,通过误差计算本层参数的梯度值,然后将差项传播到前一层
1
遮罩评分R-CNN(MSR-CNN),,,。
CVPR2019口头论文,该项目基于。
介绍包含一个网络模块,用于了解预测的实例遮罩的质量。
所提出的网络块将实例特征和相应的预测掩码一起使用以对掩码IoU进行回归。
遮罩评分策略可在COCOAP评估过程中优先考虑更准确的遮罩预测,从而校准遮罩质量和遮罩得分之间的偏差,并提高实例分割性能。
通过对COCO数据集的广泛评估,MaskScoringR-CNN通过不同的模型和不同的框架带来一致且显着的收益。
MSR-CNN的网络如下:安装检查以获取安装说明。
准备数据mkdir-pdatasets/cocoln-s/path_to_coco_dataset/annotationsdatasets/coco/annotationsln-s/path_to_coco_dataset/trai
2024/7/13 21:17:27 1.59MB Python
1
共 198 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡