由于资源复用,D2D链路与蜂窝链路之间会产生同频干扰。
为了抑制这种干扰,提出了一种基于Kuhn-Munkres最优匹配的资源分配算法。
该算法采用了图论中的Kuhn-Munkres最优匹配算法来实现最大限度的复用系统内的RB,达到提高系统吞吐量的目的。
同时,通过使一对D2D用户复用多个RB进行通信以保证不同的QoS需求。
最后,通过计算机仿真可以看出,该算法既可以有效地满足D2D用户的不同QoS需求,又提高了系统吞吐量。
1
(1)高性能全交换,千兆主干,满足大负荷网络运行需求;
  (2)带宽优化技术,降低链路费用。
  (3)支持多媒体应用包括多媒体教室、电子阅览室、多媒体教学;
  (4)采用光缆支持较长距离,满足不同用户需求。
  (5)管理简单,浏览器方式无需专门培训;
  (6)系统安全,保密性高;
2024/7/20 14:30:52 314KB 计算机网络 校园网设计方案
1
《TCP/IP详解》是已故网络专家、著名技术作家W.RichardStevens的传世之作,内容详尽且极具权*,被誉为TCP/IP领域的不朽名著。
  本书是《TCP/IP详解》第1卷的第2版,主要讲述TCP/IP协议,结合大量实例讲述TCP/IP协议族的定义原因,以及在各种不同的操作系统中的应用及工作方式。
第2版在保留Stevens卓越的知识体系和写作风格的基础上,新加入的作者KevinR.Fall结合其作为TCP/IP协议研究领域领导者的尖端经验来更新本书,反映了*新的协议和*佳的实践方法。
首先,他介绍了TCP/IP的核心目标和体系结构概念,展示了它们如何能连接不同的网络和支持多个服务同时运行。
接着,他详细解释了IPv4和IPv6网络中的互联网地址。
然后,他采用自底向上的方式介绍TCP/IP的结构和功能:从链路层协议(如Ethernet和Wi-Fi),经网络层、传输层到应用层。
2024/7/17 2:19:02 132.07MB TCP IP详解
1
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------IEC-60870-5-104:应用模型是:物理层,链路层,网络层,传输层,应用层物理层保证数据的正确送达,保证如何避免冲突。
(物理层利用如RS232上利用全双工)链路层负责具体对那个slave的通讯,对于成功与否,是否重传由链路层控制(RS4852线利用禁止链路层确认)应用层负责具体的一些应用,如问全数据还是单点数据还是类数据等(网络利用CSMA/CD等保证避免冲突的发生)---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------基本定义:端口号2404,站端为Server控端为Client,平衡式传输,2Byte站地址,2Byte传送原因,3Byte信息地址。
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------注:APDU应用规约数据单元(整个数据)=APCI应用规约控制信息(固定6个字节)+ASDU应用服务数据单元(长度可变)---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------APDU长度(系统-特定参数,指定每个系统APDU的最大长度)APDU的最大长度域为253(缺省)。
视具体系统最大长度可以压缩。
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------【1个例子】104报文分析BUF序0123456789.10111213141516171819202122M->R:6815100002001E01030001007900000110012413D20A02分析的结果是I(主动上报SOE,主动上报是因为104是平衡式规约)报文头固定为0x68,即十进制104长度15字节(不是6帧的,都是I帧)发送序号=8【控制字节的解析10000200,发送序号:0010H/2=16/2=8】接收序号=1【控制字节的解析10000200,接收序号:0002H/2=2/2=1】0x1E=30即M_SP_TB_1带长时标的单点信息01->SQ:0信号个数:10300->传送原因:[T=0P/N=0原因=3|突发]0100->公共地址:1790000->0x79=121信息体地址:12101->状态:1IV:0NT:0SB:0BL:010012413D20A02->低位10高位01,即0x0110=1*16*16+16=272时标:2002/10/1819:36:00.272
2024/7/5 19:30:53 366KB 104 规约 报文详解
1
4.1:计算机网络、网络通信参考模型、交换机命令行、交换机命令行配置、数据链路.docx
2024/7/5 11:12:45 128KB linux
1
SMPTEST2082-1:速率为11.88Gb/s和11.88/1.001Gb/s的12G-SDI(包括多链路12G-SDI),提供由任何ST2082-x映射映射的数据.
2024/7/2 14:35:51 652KB SMPTE 2082
1
依据IEC61375-1协议规范,详细介绍了TCN实时协议过程数据的基本通信机制,设计了过程数据链路层和变量应用层的实现方案。
在此基础上,组成1主3从的MVB通信网络为实验环境,完成了实时协议栈过程数据通信测试,测试结果符合标准要求,验证了方案的可行性。
1
通信信号处理课件,该课件准确清晰,pdf格式。
内容为通信基础,从信道建模,调制解调,发射机和接收机,均衡技术,LTE中的上下行链路。
2024/6/7 5:13:44 11.35MB 课件讲义
1
北邮计算机网络实验选择重传实验一:数据链路层滑动窗口协议的设计与实现效率大于60%,采用CRC校验技术,网络层分组长度固定为256字节
2024/6/3 20:06:29 292KB 协议 计算机网络 选择重传
1
数据链路层的流量控制滑动窗口协议,其中采用选择重传协议,用c语言实现,实验中实现(1)在高丢包率和错误率下,实现选择重传。
(2)在基于广播的形式发送方发送数据,多个接收方全部接收到数据,但只有指定的接收方接收到数据,而其他的接收方并不做处理。
实验环境带gcc的linux
2024/6/1 10:30:24 1.37MB c语言 选择重传协议 linux
1
共 197 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡