数学建模论文,关于无人机自主飞行航迹规划问题
2023/9/19 19:53:46 714KB 数学建模 无人机 航迹规划
1
经典的路径规划类算法。
移动机器人路径规划是机器人学的一个重要研究领域。
它要求机器人依据某个或某些优化原则(如最小能量消耗,最短行走路线,最短行走时间等),在其工作空间中找到一条从起始状态到目标状态的能避开障碍物的最优路径。
机器人路径规划问题可以建模为一个有约束的优化问题,都要完成路径规划、定位和避障等任务。
值得一学。
2023/9/15 15:03:38 4KB 蚁群算法 路径规划
1
lingo是求解最优问题的有效软件,不仅可以求一般的线性规划和非线性规划,还可以求无目标函数的动态规划问题,该论文给出了求解代码!
2023/9/14 22:17:40 1.49MB LINGO 运筹优化 动态规划 求解代码
1
matlab模拟退火算法的通用代码,适合各类线性规划问题的求解
2023/9/5 2:45:43 1KB matlab
1
数学建模-线形规划问题-投资公司投资问题
1
本文主要介绍了基于SAT路径规划算法以及路径规划系统的设计方案。
通过移动机器人抓取积木为例,介绍了基于SAT路径规划算法包括的规划问题的命题表示方法以及如何使用SAT求解器对规划命题进行求解。
该系统较传统的路径规划系统而言,路径规划解提取速度较快,无需传感器的反复检测初始状态及目标状态,规划效率较高。
1
yalmip是一位“集大成者”,它不只自己包含基本的线性规划求解算法,比如linprog(线性规划)、bintprog(二值线性规划)、bnb(分支界定算法)等,他还提供了对cplex、GLPK、lpsolve等求解工具包更高层次的包装。
更为可贵的是,yalmip真正实现了建模和算法二者的分离,它提供了一种统一的、简单的建模语言,针对所有的规划问题,都可以用这种统一的方式建模;
至于用哪种求解算法,你只需要通过一次简单的参数配置指定就可以了,甚至不用你指定,yalmip会自动为你选择最适合的算法
2023/2/6 1:50:14 1.07MB YALMIP-maste
1
针对氧化铝烧结法配料某些生料成份的不确定性,引入L-R模糊数描述,并建立该类问题的优化模型.基于模糊参数的ɑ-截集和隶属函数的性质,原模糊规划问题被转化成半无限规划问题.再利用约束函数最值法,上述导出的半无限规划问题变成了普通线性规划问题进行求解.所建立的模型和求解方法的无效性均在氧化铝烧结法的矿配问题中得到验证.
2023/1/12 23:22:40 270KB 烧结法 ; 配料 ;
1
[摘要]本文讨论了空中加油问题中如何获取最大的作战半径的加油方式。
首先我们通过逻辑推理,算出在总辅机数n4情况下的最佳作战方案,找出其一般规律。
然后证明了对称性方法的最优性,求解时将辅机分为两类,一类专为飞机前进服务,第二类专为飞机前往服务,通过对称性方法、逐层分析和对比,利用穷尽列举法,得出了在满足假设条件下,按照n取值不同而确定的最优作战方案,依据得出的数据结果,利用spss软件拟合函数,预测出在时的关于n的渐进关系式。
接着在前两问的基础上,引进飞机可重复飞行的条件,通过对称性方法将模型简化为问题2的一种情况,求得。
在第4问中先通过图解法,以1架辅机确定另两个基地的位置,由于基地的不可移动性,联系问题3,讨论出。
最后利用图解法,与前几问联系求出第5问的解。
期间用到的大部分模型都做出了选择或舍去的证明。
本模型虽然在假设条件的限制下有一定的约束性,可是其通过计算机穷尽列举的方法,在许多问题中都有所应用,具有普遍性,也不失为一种算法。
本模型对于其它运输规划问题有一定的参考价值。
1
[摘要]本文讨论了空中加油问题中如何获取最大的作战半径的加油方式。
首先我们通过逻辑推理,算出在总辅机数n4情况下的最佳作战方案,找出其一般规律。
然后证明了对称性方法的最优性,求解时将辅机分为两类,一类专为飞机前进服务,第二类专为飞机前往服务,通过对称性方法、逐层分析和对比,利用穷尽列举法,得出了在满足假设条件下,按照n取值不同而确定的最优作战方案,依据得出的数据结果,利用spss软件拟合函数,预测出在时的关于n的渐进关系式。
接着在前两问的基础上,引进飞机可重复飞行的条件,通过对称性方法将模型简化为问题2的一种情况,求得。
在第4问中先通过图解法,以1架辅机确定另两个基地的位置,由于基地的不可移动性,联系问题3,讨论出。
最后利用图解法,与前几问联系求出第5问的解。
期间用到的大部分模型都做出了选择或舍去的证明。
本模型虽然在假设条件的限制下有一定的约束性,可是其通过计算机穷尽列举的方法,在许多问题中都有所应用,具有普遍性,也不失为一种算法。
本模型对于其它运输规划问题有一定的参考价值。
1
共 57 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡