DRL-网球统一项目详情这是Udacity深度强化学习纳米学位的最终项目。
在这种环境下,两名特工控制球拍在球网上弹跳球。
如果探员将球击中网,则得到+0.1的奖励。
如果探员让一个球击中地面或将球击出界外,则其获得的奖励为-0.01。
因此,每个特工的目标是保持比赛中的球权。
观察空间由8个变量组成,分别对应于球和球拍的位置和速度。
每个代理都会收到自己的本地观察结果。
有两个连续的动作可用,分别对应于朝向(或远离)网络的运动和跳跃。
该任务是情节性的,并且为了解决环境,您的特工必须获得+0.5的平均分数(在连续两次情节达到最高分后,在两个特工中均取得了最高分)这些是此Unity环境的一些细节:INFO:unityagents:'Academy'startedsuccessfully!UnityAcademyname:AcademyNumb
2023/8/17 2:09:36 157KB JupyterNotebook
1
ChristmasLEDproject:Aurdino纳米圣诞灯
2023/7/25 16:02:20 2KB C++
1
含Fe3O4纳米带的复合材料的大电磁波吸收带宽
2023/7/25 14:21:48 2.16MB 研究论文
1
智能响应性纳米介孔硅药物递送系统构建与抗肿瘤应用_刘军杰.caj
2023/7/14 22:18:22 15.66MB 智能响应
1
基于时域有限差分法/时域多分辨(FDTD/MRTD)混合方法研究了微粗糙光学表面与多体缺陷粒子的复合光散射问题。
建立微粗糙光学表面与掩埋多体粒子复合散射模型,利用DB2小波尺度函数的移位内插原理,将计算区域分别划分为MRTD和FDTD方法区域,推导出复合散射场,计算微粗糙光学表面中掩埋多体粒子的复合散射截面,并与矩量法的结果比较以验证该方法的有效性。
分析入射角、气泡粒子的个数、相对位置及深度等物性特征对微粗糙光学表面与掩埋多体粒子复合双站散射截面的影响。
上述结果为光学无损检测、光学薄膜、微纳米结构的光学性能设计等领域提供技术支持。
2023/7/9 22:57:55 10.48MB 薄膜 复合散射 光学表面 FDTD/MRTD
1
日本开发光晶格钟160亿年才产生1s误差;新型电抽运半导体激光器提高成像质量;纳米光学天线或将取代受激光辐射激光器;科学家实现多自由度量子体系隐形传态;阿拉伯世界开辟阿秒科学前哨;新型超高时空分辨率超分辨成像技术;首个直接兼容硅晶片的锗锡半导体激光器
2023/7/9 8:21:23 2.81MB 论文
1
《机器人手册第1卷机器人基础》共分两篇,分别为机器人学基础和机器人结构。
  机器人学基础篇介绍了在模型、设计和控制机器人系统过程中用到的基本原则和方法,包括运动学、动力学、机构与驱动、传感与估计、运动规划、动作控制、力控制、机器人体系结构与程序设计、机器人智能推理方法。
这些主题将被拓展和应用到特殊的机器人结构和系统中。
  机器人结构篇既阐述了机器人的性能评价与设计标准、模型识别,又介绍了运动学冗余机械臂、并联机器人、具有柔性元件的机器人、机器人手、有腿机器人、轮式机器人、微型和纳米机器人的结构。
探讨了在实际物理实现过程中的设计、模型、运动计划和控
2023/7/8 21:57:45 88.49MB 机器人
1
第一性原理计算已用于研究带有侧链CH2基团的之字形石墨烯纳米带(ZGNR)的电子和磁性。
CH2将原始ZGNR的磁态抑制在12埃之内。
当CH2的相对数量减少时,位于每个边缘的具有CH2对的ZGNR会经历从非磁性状态到反铁磁性状态的转变。
能隙在非磁性状态下打开。
当仅在一侧边缘连接有CH2的系统时,它们会显示铁磁性或亚铁磁性状态,具体取决于CH2的数量。
CH2基团同时饱和ZGNR的CS和7键,从而打开ZGNR的带隙并增强ZGNR的稳定性。
因此,基于相同的带结构但CH2基团的位置和数量不同,ZGNR提供了广泛的可能的电子和磁性。
2023/7/3 12:20:22 1024KB Spin; Band-gap engineering; Magnetic
1
机器人手册第1卷机器人基础带目录。
机器人手册第1卷机器人基础《机器人手册第1卷机器人基础》共分两篇,分别为机器人学基础和机器人结构。
  机器人学基础篇介绍了在模型、设计和控制机器人系统过程中用到的基本原则和方法,包括运动学、动力学、机构与驱动、传感与估计、运动规划、动作控制、力控制、机器人体系结构与程序设计、机器人智能推理方法。
这些主题将被拓展和应用到特殊的机器人结构和系统中。
  机器人结构篇既阐述了机器人的性能评价与设计标准、模型识别,又介绍了运动学冗余机械臂、并联机器人、具有柔性元件的机器人、机器人手、有腿机器人、轮式机器人、微型和纳米机器人的结构。
探讨了在实际物理实现过程中的设计、模型、运动计划和控制等问机器人手册第1卷机器人基础
2023/7/2 16:33:31 88.73MB 机器人手册 第1卷 机器人 开发
1
光学显微镜的出现为细胞等微观结构的研究打开了新的大门,然而衍射极限的限制使得更加精细的结构难以探测。
近年来,一些充满创造性的方法突破了衍射极限,达到纳米级分辨率。
氮-空位(NV)色心是金刚石中一种常见的发光缺陷,由于其具有明亮而稳定的发光性质和较长的电子自旋相干时间而被广泛应用于量子计算与量子测量中;
同时,NV色心在超分辨成像技术中也发挥着巨大作用,通过与各种超分辨成像显微镜的结合,实现了对NV色心的纳米级分辨率成像,而且进一步实现高空间分辨率的量子传感。
本文简单介绍了NV色心的结构与性质,以及各类成像技术的基本原理;
对NV色心与超分辨成像结合的各项技术实验成果进行了归纳与比较,并对其应用进行了总结与展望。
2023/6/6 23:54:40 10.87MB 成像系统 超分辨成 衍射极限 NV色心
1
共 75 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡