matlab马科维茨代码QMD算法这是用于商最小度算法(QMD)的健壮Matlab代码。
在数值分析中,最小度算法是用于在应用Cholesky分解之前对对称稀疏矩阵的行和列进行置换的算法,以减少Cholesky因子中的非零数。
最小度算法经常用在有限元方法中,其中只能根据网格的拓扑而不是偏微分方程中的系数来进行节点的重新排序,从而在使用相同的网格来节省效率时各种系数值。
QMD算法的上限严格为O(n2m)。
语境找到最佳排序的问题是一个NP完全问题,因此很棘手,因此改用启发式方法。
最小度算法是从Markowitz于1959年首次提出的用于解决非对称线性规划问题的方法中衍生出来的,下面将对此进行粗略地描述。
在高斯消除的每个步骤中,都执行行和列置换,以使枢轴行和列中偏离对角非零的数量最小。
Tinow和Walker在1967年描述了一种对称方式的Markowitz方法,Rose后来又推导了该图的图形理论方式,其中仅模拟了因式分解,这被称为最小度算法。
当存在相同程度的选择时,这种算法的一个关键方面是突破打破策略。
输入和输出perm:theoutputpermutatio
2020/11/14 18:43:03 19KB 系统开源
1
十字链表存储稀疏矩阵算法,完成两个矩阵的乘法运算
2018/11/21 14:50:04 36KB 十字链表 稀疏矩阵 乘法
1
稀疏矩阵的DIA/ELLPACK/COO/CSR/HYB表示方式,以及各表示方式下的稀疏矩阵乘法(稀疏大矩阵*矢量)的CUDA实现。
对于矩阵中每一行稀疏元素个数较统一的情况,ELLPACK表示最佳,其次是HYB(ELL+COO)。
关于稀疏矩阵的研究很多,这里列出的仅是凤毛麟角,有兴趣的朋友我们一起探讨。
2020/5/24 14:45:52 3.13MB 稀疏矩阵乘法 spmv CUDA
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡