集成电路流水线设计
2023/12/25 3:07:56 200KB 集成电路 流水线
1
计组项目说明和要求1、说明:开发语言:C/C++目标计算机:MIPS32指令系统(已挑选的17条指令)。
2、要求:及格:(1)完成MIPS32指令的取指、译码、计算、访存和写回五个步骤的软件模拟。
(2)能够向系统输入机器语言源程序;
(2)能够对内部寄存器进行初始化;
(3)能够运行程序;
(4)能够查看运行结果,能够反映指令的执行过程。
备注:不要求图形用户界面。
优秀:(1)完成及格档要求的所有任务。
(2)能够模拟五段流水线的执行过程;
(3)能够解决数据相关的问题;
(4)能够反映流水线的执行过程。
备注:不要求图形用户界面,不要求解决控制相关问题。
2023/12/5 12:56:13 46.71MB MIPS32 五段流水线 计组 数据相关
1
北航计算机组成课程设计支持20条指令的流水线CPU的Verilog代码实现,内包含源代码和相应的测试文件
2023/11/10 0:38:15 31KB 流水线CPU
1
计算机系统结构课程设计:java仿真CPU5级流水线附有源代码和课设报告
2023/11/6 22:18:35 739KB 流水线 课设报告 高级语言 源码
1
CPU五级流水线计算机组成原理课设。
CPU五级流水线计算机组成原理课设
2023/10/24 22:16:56 1015KB CPU
1
这本最畅销的计算机组成书籍经过全面更新,关注现今发生在计算机体系结构领域的革命性变革:从单处理器发展到多核微处理器。
此外,出版这本书的ARM版是为了强调嵌入式系统对于全亚洲计算行业的重要性,并采用ARM处理器来讨论实际计算机的指令集和算术运算,因为ARM是用于嵌入式设备的最流行的指令集架构,而全世界每年约销售40亿个嵌入式设备。
与前几版一样,本书采用了一个MIPS处理器来展示计算机硬件技术、流水线、存储器层次结构以及I/O等基本功能。
此外,本书还包括一些关于x86架构的介绍。
  本书主要特点  ·采用ARMv6(ARM11系列)为主要架构来展示指令系统和计算机算术运算的基本功能。
  ·覆盖从串行计算到并行计算的革命性变革,新增了关于并行化的一章,并且每章中还有一些强调并行硬件和软件主题的小节。
  ·新增一个由NVIDIA的首席科学家和架构主管撰写的附录,介绍了现代GPU的出现和重要性,首次详细描述了这个针对可视计算进行了优化的高度并行化、多线程、多核的处理器。
  ·描述一种度量多核性能的独特方法——“Rooflinemodel”,自带benchmark测试和分析AMDOpteronX4、IntelXeon5000、SunUltraSPARCT2和IBMCell的性能。
  ·涵盖了一些关于闪存和虚拟机的新内容。
  ·提供了大量富有启发性的练习题,内容达200多页。
  ·将AMDOpteronX4和IntelNehalem作为贯穿本书的实例。
  ·用SPECCPU2006组件更新了所有处理器性能实例。
2023/10/13 4:46:46 50MB 计算机组成 硬件 软件 接口
1
基于OPenGL的场景漫游及模型加载,包括了场景的创建,obj的导入,还有可编程流水线的应用
2023/10/9 0:23:47 12.26MB OpenGL C++
1
给大家分享一个我写的用FPGA实现的实时连通区识别源代码。
具体介绍请看下文。
源代码附件里有,或者给我发邮件索取此算法的特点是:1)仅用一片低端FPGA即可实现,无需外接任何存储器。
用Xilinx的LX25就能装下,大概只用了十几个块RAM,其余的逻辑也不多。
2)实时性高,延时固定且很小。
由于该方法进行的是并行流水线处理,即对图像扫描一遍就可完成对所有连通区域的识别,因此识别每个连通区域的延时都是固定的,并不会因为图像中连通区域多,延时就增加。
该延时也很小,约扫描十几行图像的时间。
其实该算法用嵌入式cpu或dsp也可以实现,也可以做到消耗内存少,延时小。
3)能同时给出连通区域的各种统计信息。
该方法在识别出连通区域的同时还能给出该连通区域的面积、周长、外切矩形中心点坐标等统计信息。
还可以统计出该连通区内某特定颜色的点有多少个之类的信息。
4)可靠性高。
对一些特殊形状的连通区,例如U型W型等,都能识别并给出正确的统计信息。
2023/10/2 11:07:01 559KB 连通区识别
1
北航计算机组成课Project5资源。
包含:全套流水线cpu源代码,数据通路设计和暂停转发分析excel表,和覆盖所有冲突情况的Mips汇编强测代码。
2023/9/17 12:34:26 636KB 北航计组 Project5 流水线CPU 暂停转发
1
计算机组成课程作业源码。
MIPS单周期/多周期流水线设计,多周期流水线实现了数据冒险,控制冒险。
代码结构清晰,欢迎交流讨论。
1
共 104 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡