【DM365_NAND启动模式解析】DM365是一款由TexasInstruments(TI)生产的数字媒体处理器,常用于视频处理和嵌入式系统。
在DM365中,NAND闪存是一种常见的非易失性存储器,用于存储固件和操作系统。
NAND启动模式是指DM365在上电或复位后从NAND闪存中加载启动代码的过程。
此过程涉及一系列复杂的步骤,确保系统能够正确地从NAND中读取和执行固件。
**NAND启动流程**1.**初始化**:系统首先初始化RAM1的高2KB栈空间(0x7800-0x7fff),避免覆盖用于存储UBL块号的最后32个字节(0x7ffc-0x8000)。
2.**禁止中断**:所有中断(IRQ和FIQ)被禁用,以确保启动过程不被打断。
3.**设置DEEPSLEEPZ/GIO0**:这个外部引脚在NAND启动时必须处于高电平。
4.**读取NANDID**:读取NAND闪存的设备ID,获取设备特性,如页面大小、块大小等。
5.**初始化NAND区域**:根据NAND的参数设置控制器和寄存器。
6.**搜索UBL描述符**:RBL(ROMBootloader)在block1的page0开始搜索UBL(UserBootLoader)的描述符。
如果未找到正确的UBL,会依次检查接下来的24个块,以防遇到坏块。
7.**处理UBL描述符**:UBL描述符包含入口点地址、占用的NAND页数、起始块和起始页等信息,用于指导UBL的加载和执行。
8.**ECC错误检测和校正**:开启硬件ECC(ErrorCorrectionCode)检测,复制UBL到IRAM(InternalRAM)。
如果检测到4位ECC错误,通过ECC算法进行纠正。
如果多次失败,RBL会尝试下一个块,直到找到有效的UBL描述符,或者在搜索完24个块后转而从SD卡启动。
9.**启动UBL**:在UBL的入口点执行代码,将控制权交给UBL。
10.**安全启动模式**:根据配置,启动模式可能包括PLL旁通模式,不使用快速EMIF、DMA或I-Cache。
在其他模式下,这些功能可以被启用以提高性能。
**NANDUBLdescriptor格式**UBL描述符是一个包含关键信息的数据结构,用于指示如何加载和执行UBL。
它可能包含如下字段:-入口点地址:UBL执行的起点。
-UBL占用的NAND页数:指示UBL的大小,必须是连续的页。
-UBL的起始块和起始页:定义UBL在NAND中的位置。
-MAGICIDs:特定的标识符,用于识别不同的启动模式。
**NAND启动详细流程**1.初始化栈空间、禁止中断、设置DEEPSLEEPZ/GIO0。
2.读取NAND设备ID,初始化NAND控制器。
3.搜索UBL描述符,最多遍历24个块。
4.复制并校验UBL到IRAM,根据UBL描述符配置启动选项。
5.转交控制权给UBL执行。
NAND启动流程图和具体的ARMNANDROMBootloader实例进一步详细说明了这个过程。
此外,支持的NAND设备ID列表确保了对多种NAND闪存设备的兼容性。
DM365的NAND启动模式解析涉及了设备识别、错误检测、固件加载和执行等多个环节,确保了系统的稳定和可靠启动。
理解这一过程对于开发和调试基于DM365的嵌入式系统至关重要。
2025/5/20 16:04:21 249KB DM365
1
###TIDM36x系列DSPNANDFlash启动过程详解####一、NANDFlash启动原理#####1.1DM365支持的NAND启动特性TI的TMS320DM365(以下简称DM365)多媒体处理芯片支持多种启动方式,包括NANDFlash启动。
在NANDFlash启动过程中,DM365具有一系列独特的启动特性:1.**不支持一次性全部固件下载启动**:DM365不支持一次性将所有固件数据从NANDFlash读入内存并启动,而是采用分阶段的方式。
首先从NANDFlash读取第二级启动代码(UserBootLoader,UBL)至ARM内存(ARMInternalMemory,AIM),然后执行UBL。
2.**支持最大4KB页大小的NAND**:支持的NANDFlash页大小可达4KB,这对于大多数常见的NANDFlash设备来说是足够的。
3.**支持特殊数字标志的错误检测**:在加载UBL时会进行错误检测,尝试最多24次在不同的block中寻找特殊数字标志,以确保数据的正确性。
4.**支持30KB大小的UBL**:DM365有32KB的内存用于存放启动代码,其中2KB用于RBL(ROMBootLoader)的堆栈,剩余的空间可用来存储UBL。
5.**用户可选的DMA与I-cache支持**:用户可以根据需要在RBL执行期间启用或禁用DMA和I-cache等功能。
6.**支持4位硬件ECC**:支持每512字节需要ECC位数小于或等于4位的NANDFlash,这有助于提高数据的可靠性。
7.**支持特定的NANDFlash类型**:支持那些需要片选信号在Tr读时间保持低电平的NANDFlash。
#####1.2NANDFlash启动流程NANDFlash启动流程是指从芯片上电到Linux操作系统启动的整个过程,主要包括以下几个步骤:1.**ROMBootLoader(RBL)阶段**:当DM365芯片上电或复位时,会根据BTSEL引脚的状态确定启动方式。
如果是NAND启动,则从ROM中的RBL开始执行。
RBL会初始化必要的硬件资源,如设置堆栈,关闭中断,并读取NANDFlash的ID信息以进行适当的配置。
2.**UserBootLoader(UBL)阶段**:RBL从NANDFlash读取UBL并将其复制到AIM中运行。
UBL负责进一步初始化硬件资源,如DDR内存,并为下一阶段准备环境。
3.**U-Boot阶段**:UBL从NANDFlash读取U-Boot并将其复制到DDR内存中运行。
U-Boot是完整的启动加载程序,它负责最终从NANDFlash读取Linux内核并将其复制到DDR内存中。
4.**Linux内核启动阶段**:U-Boot启动Linux内核,内核加载并运行,此时系统完成启动。
####二、NANDFlash启动的软件配合实现#####2.1UBL描述符的实现UBL描述符是UBL读取和执行的起点。
在NANDFlash中,UBL描述符通常位于特定的位置,包含UBL的起始地址和长度等信息。
RBL通过读取这些描述符来确定UBL的具体位置并加载到AIM中。
#####2.2U-Boot启动实现U-Boot是一种开源的启动加载程序,负责从NANDFlash读取Linux内核并将其加载到内存中。
U-Boot的实现依赖于UBL提供的环境,例如已经初始化的DDR内存。
#####2.3U-Boot更新UBL和U-Boot的原理U-Boot可以被用来更新UBL和自身的代码。
这一过程通常涉及到从NANDFlash读取新的代码版本,验证其完整性,并将其替换现有的UBL或U-Boot代码。
#####2.4NANDFlash没有坏块的情况在理想情况下,即NANDFlash没有坏块的情况下,启动流程会非常顺利。
RBL能够成功地从NANDFlash读取UBL,UBL也能正确地读取U-Boot,进而完成Linux内核的加载。
####三、结束语DM365的NANDFlash启动过程是一个复杂的多阶段过程,涉及ROMBootLoader(RBL)、UserBootLoader(UBL)和U-Boot等多个组件之间的协调工作。
通过对这些组件的理解和优化,可以有效地提高启动速度和系统的稳定性。
希望本文能帮助读者更好地理解DM365的NANDFlash启动过程及其背后的技术细节。
2025/5/20 15:59:25 439KB DSP NANDflash 启动过程分析
1
###DM365开发板资料详解:SequentialJPEG解码器功能及限制####概述本资料针对DM365开发板上的SequentialJPEG解码器进行了详细介绍。
该解码器支持多种输入格式,并提供了多种配置选项,旨在满足不同应用场景的需求。
此文档将深入探讨该解码器的主要特点、支持的功能以及一些限制条件。
####主要特点-**eXpressDSP™DigitalMedia(XDM1.0)**:该解码器遵循eXpressDSP™DigitalMedia1.0规范,确保与平台的兼容性。
-**旋转和支持**:支持图像旋转(90°、180°、270°),并支持解码区域选择。
-**接口**:支持IIMGDEC1接口和IRES接口单独使用,但不支持同时使用。
-**环形缓冲区**:采用环形缓冲区配置位流缓冲区,以减少缓冲区大小需求。
-**操作系统**:已在MontaVista®Linux®5.0上验证。
-**多实例支持**:支持多个JPEG解码器实例,且可与其他DM365代码一起运行。
####功能支持-**基线顺序过程**:支持基线顺序处理,但存在以下限制:-不支持非交错扫描。
-仅支持1和3组件。
-Huffman表和量化表对于U和V组件必须相同。
-最多支持四个AC和DCDCT系数表(每个两组)。
-**输出格式**:-YUV4:2:2交错数据作为输出。
-YUV4:2:0半平面(NV12格式,即Y平面,CbCr交错)数据作为输出。
-**输入格式**:-支持YUV4:2:0、YUV4:2:2、YUV4:4:4、交错YUV4:2:2以及灰度图(8x8像素MCU)。
-支持YUV4:2:0、YUV4:2:2和YUV4:4:4的平面格式。
-**量化表格**:支持8位量化表格。
-**帧级解码**:支持帧级别的图像解码。
-**分辨率**:支持最高可达(水平MCU大小*1024)*(垂直MCU大小*1024)像素的图像解码。
理论上最大值为64M像素,但实际测试仅达到64M像素以下。
####限制条件-**扩展DCT基于的过程**:不支持扩展DCT基于的过程。
-**无损处理**:不支持无损处理。
-**分层处理**:不支持分层处理。
-**渐进扫描**:不支持渐进扫描。
-**特定输入格式**:不支持YUV4:1:1输入格式或灰度图(16x16像素MCU)。
-**解码图像宽度**:不支持小于64像素的解码图像宽度。
-**解码图像高度**:不支持小于32像素的解码图像高度。
-**源图像**:不支持12位每样本的源图像。
-**内存限制**:如果解码器内存和I/O缓冲区需求超过DDR内存可用性,则可能需要使用环形缓冲区和切片模式解码来处理更高分辨率的图像。
####结论该SequentialJPEG解码器为DM365开发板提供了一种高效、灵活的图像解码解决方案。
它不仅支持多种输入格式,还具有强大的配置选项,使得开发者可以根据具体应用场景进行定制化设置。
然而,需要注意的是,该解码器在某些方面存在一定的限制,开发者在使用时需根据这些限制进行适当的调整。
通过合理利用该解码器的特点和功能,可以有效提高基于DM365开发板的IP摄像机等网络监控应用的性能。
2025/5/20 8:20:50 79KB DM365 files
1
共两个不同设计例子,都含详细的文档资料。
任务2.设计一个简单的二级文件系统设计要求:在任一OS下,建立一个大文件,把它假象成硬盘,在其中实现一个简单的模拟文件系统。
编写一管理程序对此空间进行管理,要求:1.实现盘块管理2.实现文件的读写操作3.每组最多2人,小组内要有明确分工,课程设计报告中设计部分可以相同,个人实现部分不同参考建议:将模拟硬盘的文件空间划分为目录区,文件区;
采用位示图进行空间管理,盘块的分配使用显示链接(FAT表)的方式。
设计技术参数(数据结构)参考:#defineMaxSize100#defineDisk512//每个盘块大小为512bit#defineNumDisk2048//有2048个盘块,既可分配空间为1M/*************目录和文件的结构定义***********************/structDirectoryNode{charname[9];/*目录或文件的名字*/inttype;/*0代表目录,1代表普通文件*/structDirectoryNode*next;/*指向下一个兄弟结点的指针*/structDirectoryNode*preDirFile;/*指向父结点的指针*/structDirectoryNode*subFile;/*指向第一个子结点的指针*/intsize;/*如果是文件则表示文件的大小*/intfirst;/*起始盘块号*/intlast;/*末尾盘块号*/intorder;/*备用*/};//连续分配structFileSys{intVacTable[NumDisk];//空闲表,0为空闲,1为被用structDirectoryNoderoot;//根目录structDirectoryNodeDirectory[NumDisk];}*filesys;typedefstruct{structDirectoryNode*DirFile;charname[9];}DataType;//包含一个指向目录的指针和名字typedefstruct{//队列结构的实现DataTypedata[MaxSize];intfront,rear;//分别表示队列的头结点和尾结点}Tp;voidInitQueue(Tp*sq)//队列初始化intEnAddQueue(Tp*sq,DataTypedata)//在队列中增加元素DataTypeEnDelQueue(Tp*sq)//从队列中删除一个元素intEmpty(Tp*sq)//判断队列是否为空,返回0表示队列为空①.Dir:显示目录内容命令,显示当前目录下的文件和子目录。
②.Md:创建目录操作。
③.Create:创建文件,在当前目录下创建一个文件。
④.all:显示从根目录开始的所有目录和文件及其层次结点。
⑤.Cd:改变目录。
⑥.Del:删除文件操作。
⑦.Rd:删除目录操作,删除当前目录下的子目录。
⑧.Ren:重命名函数⑨.Exit:退出命令
1
三个文件都是16bits,都是单通道。
(PCM格式原始音乐数据。
根据数字音频的产生过程可知,相对自然界的信号,音频编码最多只能做到无限接近,至少目前的技术只能这样了,任何数字音频编码方案都是有损的,因为无法完全还原。
在计算机应用中,能够达到最高保真水平的就是PCM编码,被广泛用于素材保存及音乐欣赏,CD、DVD以及我们常见的WAV文件中均有应用。
1
有一本《ProgramminginLua》,lua版本是5.1,用于插件的功能代码编写2份wow插件的简单实例教程外带wow的API手册供查询wow插件编写资料实在太少,CWDG可能是目前中文资料最多的地方,英文的推荐wowwiki或者wowprogram
1
代码分为read_can_use.m和main_can_ues.m先运行read_can_use.m读取图片的像素值,使用奇异值分解的方法得到对应的特征。
程序预设了只读取前5个人的人脸图片,可以自己改成最多15个人。
然后运行main_can_use.m,程序会输出112323,每个数字代表一张图片最有可能的识别类别(就是人的编号)。
对每个人的11张图片,取前7张训练网络,后4张测试网络,取前5个人进行实验。
所以共有35个训练样本,20个测试样本。
比如输出的结果是111122123333…..,因为每4个数字是属于同一个人的,前四个都是1则都预测正确,第二组的4个数字2212中的那个1就是预测错误(本来是2预测成了1)。
由于参数的随机初始化,不保证每次的结果都相同。
2025/4/25 5:01:34 1.39MB 神经网络 人脸识别
1
进程同步的模拟与实现阅览室读书问题:假定一个阅览室最多可容纳100人,读者进入和离开阅览室时都必须在阅览室门口的一个登记表上进行登记,而且每次只允许一人进行登记操作。
请用信号量实现上述进程的同步问题。
2025/4/23 20:31:34 5KB java
1
互斥缓存-Python一个小型实用程序库,用于基于缓存键动态创建互斥体。
用例假设您正在实现一个graphql服务器,其对象字段彼此独立地异步解析。
多个字段执行相同的操作,因此应使用互斥锁和一些基本缓存来确保数据库查询最多发生一次。
如果您有这些对象的数组,则它们突然都使用相同的互斥量,这可能会降低性能。
动态创建多个短期的互斥对象,而不是使用一个互斥对象来全部统治它们,每个对象可以独立于其他解析对象使用。
通过为互斥锁使用与用于缓存检查相同的缓存键,几乎可以透明地使用动态创建的互斥锁,而不必担心互斥锁的性能或分配/取消分配。
使用互斥锁,如果已经存储了与缓存键关联的互斥锁,则将其返回。
否则,将以静默方式创建新的互斥锁,将其存储以备将来使用并返回。
安装pip3installmutexcache用法MutexCache.get()返回threading.Lock对
2025/4/19 19:37:03 8KB Python
1
该学习资源是我小组在课程设计周设计的基于JSP+Servlet+JavaBean+JDBC+DAO的Web架构实现的图书管理系统,主要实现如下的基本管理功能:(1)用户分为两类:系统管理员,一般用户。
(2)提供用户注册和用户登录验证功能;
其中登录用户的信息有:登录用户名,登录密码等。
(3)管理员可以实现对注册用户的管理(删除),并实现对图书的创建、查询、修改和删除等有关的操作(4)一般用户,只能查询图书,并进行借书、还书、续借、预约图书等操作,每个用户最多借阅8本,即当目前借书已经是8本,则不能再借书了,只有还书后,才可以再借阅。
注意:每个用户,只能对自己所借、还、查看进行操作,其他人的是不可见的。
(5)图书过期罚款,每本书,过期一天罚款一元,在还书时,利用支付宝或者微信实现支付。
注意:此学习资源中只有支付例图最后注意,本资源只用于交流学习,代码并不完美,有待改进,另附有此系统各功能操作的演示视频。
1
共 301 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡