基于距离和方向的扩展卡尔曼状态估计maltba仿真。
3维场景下,测量得到目标的距离和方位,通过扩展卡尔曼估计目标的位置和速度信息。
适用于目标匀速运动的情况。
2024/1/12 1:37:52 157KB EKF
1
SIFT特征是基于物体上的一些局部外观的兴趣点而与影像的大小和旋转无关。
对于光线、噪声、微视角改变的容忍度也相当高。
基于这些特性,它们是高度显著而且相对容易撷取,在母数庞大的特征数据库中,很容易辨识物体而且鲜有误认。
使用SIFT特征描述对于部分物体遮蔽的侦测率也相当高,甚至只需要3个以上的SIFT物体特征就足以计算出位置与方位。
在现今的电脑硬件速度下和小型的特征数据库条件下,辨识速度可接近即时运算。
SIFT特征的信息量大,适合在海量数据库中快速准确匹配。
2023/12/29 17:55:33 431KB 图像匹配
1
2020年的大学生智能车竞赛的细则,这次比赛第一次引入AI,同时信标组也改变了形式,提出了对声音的处理,从而获得方位判断,实现判灯的操作。
2023/12/26 12:16:21 1.48MB 大学生智能车竞赛细则 官方发布
1
将一定范围的经纬网进行等角斜方位投影的转化并可视化,生成特殊点的变形率
2023/12/5 1:56:30 111.45MB 地图投影 MFC
1
用C++编写的单片空间后方交会程序,通过已知航摄仪的内方位元素:fk=153.24mm,x0=y0=0.0mm,摄影比例尺为1:50000;
4个地面控制点的地面坐标及其对应像点的像片坐标来输出像片的外方位元素。
2023/12/4 18:16:48 255KB 数字摄影测量 空间后方交会
1
第1章绪论1.1合成孔径雷达概况1.2发展历程1.2.1国外SAR发展历程1.2.2我国SAR发展历程1.3发展趋势1.4主要应用1.4.1军事领域1.4.2民用领域1.5内容安排第2章合成孔径雷达2.1概述2.2SAR成像基本原理2.2.1距离向分辨率与脉冲压缩技术2.2.2方位向分辨率与合成孔径原理2.2.3点目标信号回波模型2.2.4SAR成像处理与算法2.3SAR成像的几何特性2.3.1斜距图像的比例失真2.3.2透视收缩与顶底位移2.3.3雷达阴影2.3.4雷达视差与立体观察第3章雷达目标电磁散射计算3.1概述3.1.1电磁散射基本计算方法3.1.2严格的经典解法3.1.3近似求解方法3.2等效电磁流计算3.2.1等效电磁流奇异性的消除3.2.2等效电磁流的分析与计算3.3多次散射的计算3.3.1几何/物理光学混合算法3.3.2存在多重散射的条件和遮挡关系的判断3.3.3几何光学/等效电磁流混合算法3.3.4GO/PO混合方法的应用3.4腔体结构电磁散射RCS计算3.4.1复射线近轴近似电磁散射算法3.4.2计算实例3.5复杂目标电磁散射的计算3.5.1复杂目标几何建模3.5.2复杂目标电磁散射混合计算第4章合成孔径雷达图像特征分析4.1概述4.2SAR图像辐射特征4.2.1SAR图像回波强度的概率分布4.2.2辐射分辨率4.3SAR图像噪声特征4.4SAR图像目标几何特征4.4.1点目标4.4.2线目标4.4.3面目标4.5SAR图像灰度统计特征4.5.1幅度特征4.5.2直方图特征4.5.3统计特征4.6SAR图像纹理特征4.6.1方向差分特征4.6.2灰度共现特征4.6.3小波纹理能量特征第5章合成孔径雷达图像分割5.1概述5.2阈值分割法5.2.1基于遗传算法的二维最大熵阈值分割法5.2.2二维模糊熵阈值分割法5.2.3双阈值分割算法5.3基于马尔可夫随机场模型的分割法5.3.1吉布斯MEF分割模型5.3.2吉布斯MRF分割算法5.3.3多尺度MRF图像分割5.4基于多尺度几何分析的分割法5.4.1基于Contourlet变换的SAR图像分割5.4.2基于Wedgelet变换的SAR图像分割5.5分割评价方法5.5.1分割质量评价5.5.2适用情况分析第6章合成孔径雷达图像目标分类6.1概述6.1.1分类流程6.1.2评价标准6.2概率密度函数估计6.2.1单-密度函数6.2.2混合密度函数6.2.3有限混合密度函数的逼近能力6.3参数估计6.3.1极大似然估计6.3.2EM算法6.4最小距离分类法6.5最大后验概率分类法6.6支持向量机分类法6.6.1支持向量机原理6.6.2支持向量机分类法6.7隐马尔可夫优化分类法6.7.1HMM原理6.7.2HMOC模型第7章合成孔径雷达图像目标识别7.1概述7.1.1识别方法7.1.2自动目标识别系统7.2基于电磁特性的目标识别7.3典型目标识别7.3.1道路识别7.3.2机场识别7.3.3MSTAR坦克识别第8章合成孔径雷达图像融合8.1概述8.1.1图像融合概念8.1.2融合效果评价8.2SAR图像与可见光图像融合8.2.1提升小波变换8.2.2基于提升小波变换区域统计特性的融合算法8.3SAR图像与多光谱图像融合8.3.1主成分分析方法8.3.2基于主成分分析的SAR与多光谱图像融合8.4多波段SAR图像融合8.4.1基于atrous算法方向滤波器组的多波段SAR图像灰度融合8.4.2多波段SAR图像伪彩色融合第9章合成孔径雷达图像压缩9.1概述9.1.1第一代和第二代压缩技术9.1.2多尺度方向分析技术9.2SAR图像压缩中的典型特征9.2.1纹理特征9.2.2变换域系数统计特征9.3SAR图像Non-SWMDA压缩方法9.3.1不可分离小波的提升实现9.3.2基于块分割的二叉树编码方案设计9.4SAR图像压缩效果评价9.4.1保真度准则9.4.2特征衡量标准
2023/10/25 11:11:44 43.18MB 合成孔径雷达 雷达成像 SAR成像
1
SAR成像处理的目的是要得到目标区域散射系数的二维分布,它是一个二维相关处理过程,通常可以分成距离向处理和方位向处理两个部分。
在处理过程中,各算法的区别在于如何定义雷达与目标的距离模型以及如何解决距离-方位耦合问题,这些问题直接导致了各种算法在成像质量和运算量方面的差异。
2023/10/14 3:07:25 491KB SAR成像 成像算法 SAR
1
两信噪比都为15dB的非相关窄带信号源分别从-1°和2°入射到基阵,与信号不相关窄带高斯白噪声,采用阵元域MUSIC、波束域MUSIC估计方位谱。
2023/10/12 23:02:03 8KB MUSIC 阵元域 波束域
1
2049年以后的万年历、黄历代码,含宜忌、日辰、时辰、时刻、吉凶、节日、农历、节气、方位、星座。
只有一个单文件,纯JS代码实现
2023/9/29 7:56:55 57KB 万年历黄历 年万年
1
地质dips玫瑰花图,是一种用以表示节理空间方位及其发育程度的图解。
其作法是:首先对一定地区范围内的节理进行系统测量,将测得的节理产状及密度数据按空间方位间隔分组(如5°或10°为一组),求出每组的节理数节理玫瑰图节理玫瑰图量和平均走向(或倾向)。
然后在标明地理方位的圆内,以半径方向表示节理方位,以半径上的长度单位表示该组节理的数量,将各组节理投入图上,连接相邻各投影点(如某一方位无节理,则连至圆心),即得到节理玫瑰花图。
表示节理走向的图叫走向玫瑰花图,只作上半圆;表示节理倾向的图叫节理倾向玫瑰花图,为全圆形;表示节理倾角的图叫节理倾角玫瑰花图
2023/9/6 23:27:51 22.11MB 地质行业
1
共 68 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡