生产者消费者问题,描述一组生产者向一组消费者提供产品/消息。
它们共享一个有界缓冲区,生产者向其中放产品/消息,消费者从中取产品/消息。
只要缓冲区未满,生产者可放产品/消息,只要缓冲区有数据,消费者可取消息。
即应满足下列二个同步条件:1.只有在缓冲池中至少有一个缓冲区已存入消息后,消费者才能从中提取消息,否则消费者必须等待。
2.只有缓冲池中至少有一个缓冲区是空时,生产者才能把消息放入缓冲区,否则生产者必须等待。
设计要求:要求设定一个缓冲池中有n个缓冲区,每个缓冲区存放一个消息,创建多个生产者,消费者,并在每个生产者消费者创建时、发出放/取产品申请时、正在放/取产品时和放/取产品结束时分别给出提示信息,并显示取/方产品前后的缓冲区状态,以检查所有处理都遵守相应的操作限制。
2025/10/10 9:46:38 2KB 操作系统 生产者消费者
1
文件的百度云网址为链接:https://pan.baidu.com/s/1hbS3j9pSmnIjfTp2RKWPlA,提取码:见资源文件爆破字典.txt。
文件包含以下内容:1)1.54G10亿条弱口令2)620.3M历次泄密门+常用弱口令字典集合.7z3)弱口令字典压缩包11M4)爆破字典1.7M5)完美字典_triom发布_v09_工9.4亿条,无重复,无中文,8-16位,文件大小---1.66G
2025/10/10 9:36:49 276B 爆破字典
1
链接:https://pan.baidu.com/s/1NixW49kIXjD6hyXY2UJORg提取码:ohrz复制这段内容后打开百度网盘手机App,操作更方便哦
2025/10/9 12:45:03 1.69MB frm一级 金程网课 frm
1
django富文本使用简明教程(基于百度Ueditor编辑器,windows平台)可以提取富文本文字和图片python3.6,django==1.11.14实现过程可以参考教程https://mp.csdn.net/postedit/88389535
2025/10/8 12:50:15 3.43MB python django 富文本 提取文字和图
1
帕绍大学硕士论文主题:域自适应本文讨论了一种通用的领域自适应模型技术的发展,这将有助于解决各种计算机视觉任务。
该模型在流行的视觉域数据集上进行图像分类任务训练,并且与其他可用的域适应方法相比,该模型的性能得到了评估。
“基于幅度的权重修剪”技术用于执行目标特征提取器优化。
有关代码的说明:models.py模块定义了源模型和目标模型。
Xception网络和顶层config.py模块定义了各种参数,例如设置路径,实验数据集组合ID等。
将来可能会添加其他配置loss.py定义了其他损失方法。
preprocessing.py模块使用各种数据集组合(包括数据扩充)定义数据预处理管道。
train_test.py是一个帮助程序模块,它定义了培训和评估方法。
evals_helper.py是一个帮助程序模块,它详细定义了评估方法。
utlis.py定义了各种绘图,辅助方法和
2025/10/7 10:41:06 2.61MB JupyterNotebook
1
也可通过网盘下载,链接:https://pan.baidu.com/s/11jarQwwGq9EZkhGOrP1U3A 提取码:8yo5
2025/10/7 0:29:33 633.99MB qt
1
通过波形文件数据,进行MFCC特征提取,做相关滤波、加窗、fft变换等,得到13维mfcc特征,若在13维基础上继续做一阶二阶差分可得到24维mfcc特征
2025/10/5 19:31:23 2.02MB Mfcc /c++
1
为解决多通道光谱图像数据成像过程中更换滤光片造成的几何畸变问题,研究了一种基于快速稳健特征(SURF)与最大子矩阵的多通道光谱图像配准方法。
利用SURF算法提取了多通道光谱图像的特征,经过透视变换得到初步配准图像。
针对配准后图像边缘出现零像素值无效区域的问题,提出了通过最大子矩阵检测图像中最大内接矩形的方法,去掉了无效边缘区域,最大化地保留了有效区域信息。
对壁画的多通道成像数据进行了实验。
结果表明,所提方法在图像尺度与亮度变化方面具有更好的稳健性,能够避免其他配准方法中无效区域对后续光谱重建与颜色复原的影响,在配准精度、信息最大化保留、时间效率方面也具有更好的性能。
2025/10/5 11:42:46 10.91MB 光谱学 几何畸变 图像配准 光谱图像
1
DEM提取坡度_坡向算法的对比研究
1
自己做的arcgis工具,很好用,里面有好几个小工具,1、利用DSM数据,提取自定义等距的高程点,高程点格式有shp、dwg、xls三种格式,2、提取dsm的有效轮廓线
2025/10/4 16:29:43 715KB 提取高程点 提取DSM有效值轮廓线
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡