流体力学的实验报告其中有思考题包含的实验为伯努利实验泵特性曲线实验毕托管测速实验不可压缩流体恒定流动动量定律实验沿程水头损失实验雷诺实验局部阻力损失实验
2025/8/14 19:36:26 293KB 流体力学 实验
1
禁忌搜索是对局部领域搜索的一种扩展,是一种全局逐步寻优算法。
搜索过程可以接受劣解,有较强的爬山能力。
2025/8/13 8:22:37 7KB 禁忌搜索
1
doc格式,60多页吧,几百道题吧,都有答案吧,看好在下!部分:1.求下面函数的返回值(微软)intfunc(x){intcountx=0;while(x){countx++;x=x&(x-1);}returncountx;}假定x=9999。
答案:8思路:将x转化为2进制,看含有的1的个数。
2.什么是“引用”?申明和使用“引用”要注意哪些问题?答:引用就是某个目标变量的“别名”(alias),对应用的操作与对变量直接操作效果完全相同。
申明一个引用的时候,切记要对其进行初始化。
引用声明完毕后,相当于目标变量名有两个名称,即该目标原名称和引用名,不能再把该引用名作为其他变量名的别名。
声明一个引用,不是新定义了一个变量,它只表示该引用名是目标变量名的一个别名,它本身不是一种数据类型,因此引用本身不占存储单元,系统也不给引用分配存储单元。
不能建立数组的引用。
3.将“引用”作为函数参数有哪些特点?(1)传递引用给函数与传递指针的效果是一样的。
这时,被调函数的形参就成为原来主调函数中的实参变量或对象的一个别名来使用,所以在被调函数中对形参变量的操作就是对其相应的目标对象(在主调函数中)的操作。
(2)使用引用传递函数的参数,在内存中并没有产生实参的副本,它是直接对实参操作;
而使用一般变量传递函数的参数,当发生函数调用时,需要给形参分配存储单元,形参变量是实参变量的副本;
如果传递的是对象,还将调用拷贝构造函数。
因此,当参数传递的数据较大时,用引用比用一般变量传递参数的效率和所占空间都好。
(3)使用指针作为函数的参数虽然也能达到与使用引用的效果,但是,在被调函数中同样要给形参分配存储单元,且需要重复使用"*指针变量名"的形式进行运算,这很容易产生错误且程序的阅读性较差;
另一方面,在主调函数的调用点处,必须用变量的地址作为实参。
而引用更容易使用,更清晰。
4.在什么时候需要使用“常引用”? 如果既要利用引用提高程序的效率,又要保护传递给函数的数据不在函数中被改变,就应使用常引用。
常引用声明方式:const类型标识符&引用名=目标变量名;
例1inta;constint&ra=a;ra=1;//错误a=1;//正确例2stringfoo();voidbar(string&s);那么下面的表达式将是非法的:bar(foo());bar("helloworld");原因在于foo()和"helloworld"串都会产生一个临时对象,而在C++中,这些临时对象都是const类型的。
因此上面的表达式就是试图将一个const类型的对象转换为非const类型,这是非法的。
引用型参数应该在能被定义为const的情况下,尽量定义为const。
5.将“引用”作为函数返回值类型的格式、好处和需要遵守的规则?格式:类型标识符&函数名(形参列表及类型说明){//函数体}好处:在内存中不产生被返回值的副本;
(注意:正是因为这点原因,所以返回一个局部变量的引用是不可取的。
因为随着该局部变量生存期的结束,相应的引用也会失效,产生runtimeerror!注意事项:(1)不能返回局部变量的引用。
这条可以参照EffectiveC++[1]的Item31。
主要原因是局部变量会在函数返回后被销毁,因此被返回的引用就成为了"无所指"的引用,程序会进入未知状态。
(2)不能返回函数内部new分配的内存的引用。
这条可以参照EffectiveC++[1]的Item31。
虽然不存在局部变量的被动销毁问题,可对于这种情况(返回函数内部new分配内存的引用),又面临其它尴尬局面。
例如,被函数返回的引用只是作为一个临时变量出现,而没有被赋予一个实际的变量,那么这个引用所指向的空间(由new分配)就无法释放,造成memoryleak。
(3)可以返回类成员的引用,但最好是const。
这条原则可以参照EffectiveC++[1]的Item30。
主要原因是当对象的属性是与某种业务规则(businessrule)相关联的时候,其赋值常常与某些其它属性或者对象的状态有关,因此有必要将赋值操作封装在一个业务规则当中。
如果其它对象可以获得该属性的非常量引用(或指针),那么对该属性的单纯赋值就
2025/8/9 4:02:35 45KB C C++ 算法 经典
1
java实现的web聊天系统前台采用Ajax局部实时刷新,后台用ServletContext存储聊天信息,简单好用,部署后即可运行,请大家下载参考~
1
非局部结构约束邻域保存嵌入模型及其在故障检测中的应用
2025/7/17 8:14:32 640KB 研究论文
1
玫瑰花图是节理统计方式之一,方法简便,形象醒目,比较清楚地反映出主要节理的方向,有助于分析区-域构造。
最常用的是节理走向玫瑰花图。
  分析节理玫瑰花图,应与区域地质构造结合起来。
因此,常把节理玫瑰花图,按测点位置标绘在地质图上。
这样就清楚反映出不同构造部位的节理与构造(如褶皱和断层)的关系。
综合分析不同构造部位节理玫瑰花图的特征,就能得出局部应力状况,甚至可以大致确定主应力轴的性质和方向。
2025/7/13 11:22:21 80KB 玫瑰花图 自动生成 应用软件
1
我们使用了循环一致性生成对抗网络(CycleConsistentGenerativeAdversarialNetworks,CycleGAN)实现了将绘画中的艺术风格迁移到摄影照片中的效果。
这种方法从图像数据集中学习整体风格,进行风格转换时只要将目标图片输入网络一次,不需要迭代的过程,因此速度较快。
我们使用了一些自己制作的数据集训练了CycleGAN风格迁移模型,并分析了这种方法的优点和局限性。
为了使风格转换后的图片保留原来的色彩分布,我们实现并分析对比了多种颜色匹配的方法。
我们还利用了MaskR-CNN模型生成的掩膜图像来做图像运算而实现了局部风格转换和混合风格转换等效果。
2025/7/12 14:11:22 5.32MB 风格迁移
1
一本目前为止最好的fluent学习书本第一章流体力学基础与FLUENT简介第一节概论一、流体的密度、重度和比重二、流体的黏性——牛顿流体与非牛顿流体三、流体的压缩性——可压缩与不可压缩流体四、液体的表面张力第二节流体力学中的力与压强一、质量力与表面力二、绝对压强、相对压强与真空度三、液体的汽化压强四、静压、动压和总压第三节能量损失与总流的能量方程一、沿程损失与局部损失二、总流的伯努里方程三、人口段与充分发展段第四节流体运动的描述一、定常流动与非定常流动二、流线与迹线三、流量与净通量四、有旋流动与有势流动五、层流与湍流第五节亚音速与超音速流动一、音速与流速二、马赫数与马赫锥三、速度系数与临界参数四、可压缩流动的伯努里方程五、等熵滞止关系式第六节正激波与斜激波一、正激波二、斜激波第七节流体多维流动基本控制方程一、物质导数二、连续性方程三、N—S方程第八节边界层与物体阻力一、边界层及基本特征二、层流边界层微分方程三、边界层动量积分关系式四、物体阻力第九节湍流模型第十节FLUENT简介一、程序的结构二、FLUENT程序可以求解的问题三、用FLUENT程序求解问题的步骤四、关于FLUENT求解器的说明五、FLUENT求解方法的选择六、边界条件的确定第二章二维流动与传热的数值计算第一节冷、热水混合器内部二维流动一、前处理——利用GAMBIT建立计算模型第1步确定求解器第2步创建坐标网格图第3步由节点创建直线第4步创建圆弧边第5步创建小管嘴第6步由线组成面第7步确定边界线的内部节点分布并创建结构化网格第8步设置边界类型第9步输出网格并保存会话二、利用FLUENT进行混合器内流动与热交换的仿真计算第1步与网格相关的操作第2步建立求解模型第3步设置流体的物理属性第4步设置边界条件第5步求解第6步显示计算结果第7步使用二阶离散化方法重新计算第8步自适应性网格修改功能小结课后练习第二节喷管内二维非定常流动一、利用GAMBIT建立计算模型第1步确定求解器第2步创建坐标网格图和边界线的节点第3步由节点创建直线第4步利用圆角功能对I点处的角倒成圆弧第5步由边线创建面第6步定义边线上的节点分布第7步创建结构化网格第8步设置边界类型第9步输出网格并保存会话二、利用FLUENT进行喷管内流动的仿真计算第1步与网格相关的操作第2步确定长度单位第3步建立求解模型第4步设置流体属性第5步设置工作压强为0atm第6步设置边界条件第7步求解定常流动第8步非定常边界条件设置以及非定常流动的计算第9步求解非定常流第10步对非定常流动计算数据的保存与后处理小结课后练习第三节三角翼的可压缩外部绕流一、利用GAMBIT建立计算模型第1步启动Gambit,并选择求解器为FLUENT5/6第2步创建节点第3步由节点连成线第4步由边线创建面第5步创建网格第6步设置边界类型第7步输出网格文件二、利用FLUENT进行仿真计算第1步启动FLUENT2D求解器并读入网格文件第2步网格检查与确定长度单位第3步建立计算模型第4步设置流体材料属性第5步设置工作压强第6步设置边界条件第7步利用求解器进行求解第8步计算结果的后处理小结课后练习第四节三角翼不可压缩的外部绕流(空化模型应用)第1步启动FLUENT2D求解器并读入网格文件第2步网格检查与确定长度单位第3步设置求解器第4步设置流体材料及其物理性质第5步设置流体的流相第6步设置边界条件第7步求解第8步对计算结果的后处理小结课后练习第五节VOF模型的应用一、利用GAMBIT建立计算模型第1步启动GAMBIT并选择FLUENT5/6求解器第2步建立坐标网格并创建节点第3步由节点连成直线段第4步创建圆弧第5步创建线段的交点G第6步将两条线在G点处分别断开第7步删除DG直线和FG弧线第8步由边创建面第9步定义边线上的节点分布第10步在面上创建结构化网格第11步设置边界类型第12步输出网格文件并保存会话二、利用FLUENT2D求解器进行求解第1步读入、显示网格并设置长度单位第2步设置求解器第3步设置流体材料及属
2025/7/10 13:07:48 4.29MB 计算流体
1
针对图像中亮度暗的部分进行增强,而其他部分保持不变,参考冈萨雷斯图像处理钨丝图像处理的例子写出的程序,对图像进行增强,达到了很好的效果。
2025/7/7 13:44:35 40KB matlab 局部 图像增强
1
弈心——最强的五子棋引擎尽管五子棋先后于1992年、2001年被计算机证明原始无禁手、原始有禁手规则下先手必胜,在五子棋专业比赛中采用现代开局规则(如基于无禁手的两次交换规则(Swap-2),基于有禁手的索索夫-8规则(Soosorv-8))远比原始规则复杂,并未被终结。
然而,相比电脑象棋,电脑五子棋的发展是缓慢的。
顶级五子棋程序虽长于局部计算,但缺乏大局观,因此很多五子棋专家相信目前的五子棋程序依旧无法超越最强的人类棋手。
通过分析当今五子棋程序的弱点并提出与之对应的解决策略,五子棋程序弈心被设计出来。
弈心具有独特的偏向战略的棋风,擅长全局优势的积累。
弈心成为第13届、14届、15届、16届、17届、18届Gomocup冠军,并以400Elo等级分的优势领先处于第二位的五子棋程序。
2017年,弈心成为首个在公开比赛中战胜人类顶尖棋手的人工智能程序。
1
共 564 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡