将遗传算法和聚类算法有效结合,充分发挥遗传算法的全局寻优能力和聚类算法的局部搜索能力,可以更好地提高聚类质量。
2024/6/16 14:39:27 4KB 遗传算法 聚类算法 matlab
1
为了实现复杂机电装备管线布局优化设计,提出了一种基于新的编码方式的管线布局智能优化方法。
首先,设计了一种具有更好通用性的新的粒子编码方法,给出了管路路径映射规则。
其次,给出了基于该编码方式的目标函数计算方法。
再次,结合管路布局领域的相关技术,采用粒子群算法对管路避障路径进行寻优。
最后应用MATLAB软件进行管路布局优化仿真计算,验证了该方法的有效性。
2024/6/7 14:47:50 1.31MB 管路;布局;编码;优化
1
基于遗传算法和非线性规划的函数寻优算法的Matlab程序代码有3个案例的程序代码本资源仅供交流,侵删
2024/6/4 13:46:57 33KB Matlab
1
利用粒子群算法对非线性函数极值进行求解寻优的matlab程序代码
2024/5/27 21:07:01 3KB matlab 粒子群
1
亲测的人工免疫寻优最大值算法,,代码可以正确运行。
2024/5/22 13:49:35 2KB MATLAB 人工免疫 优化算法
1
【目录】-MATLAB神经网络30个案例分析(开发实例系列图书)第1章BP神经网络的数据分类——语音特征信号分类1本案例选取了民歌、古筝、摇滚和流行四类不同音乐,用BP神经网络实现对这四类音乐的有效分类。
第2章BP神经网络的非线性系统建模——非线性函数拟合11本章拟合的非线性函数为y=x21+x22。
第3章遗传算法优化BP神经网络——非线性函数拟合21根据遗传算法和BP神经网络理论,在MATLAB软件中编程实现基于遗传算法优化的BP神经网络非线性系统拟合算法。
第4章神经网络遗传算法函数极值寻优——非线性函数极值寻优36对于未知的非线性函数,仅通过函数的输入输出数据难以准确寻找函数极值。
这类问题可以通过神经网络结合遗传算法求解,利用神经网络的非线性拟合能力和遗传算法的非线性寻优能力寻找函数极值。
第5章基于BP_Adaboost的强分类器设计——公司财务预警建模45BP_Adaboost模型即把BP神经网络作为弱分类器,反复训练BP神经网络预测样本输出,通过Adaboost算法得到多个BP神经网络弱分类器组成的强分类器。
第6章PID神经元网络解耦控制算法——多变量系统控制54根据PID神经元网络控制器原理,在MATLAB中编程实现PID神经元网络控制多变量耦合系统。
第7章RBF网络的回归——非线性函数回归的实现65本例用RBF网络拟合未知函数,预先设定一个非线性函数,如式y=20+x21-10cos(2πx1)+x22-10cos(2πx2)所示,假定函数解析式不清楚的情况下,随机产生x1,x2和由这两个变量按上式得出的y。
将x1,x2作为RBF网络的输入数据,将y作为RBF网络的输出数据,分别建立近似和精确RBF网络进行回归分析,并评价网络拟合效果。
第8章GRNN的数据预测——基于广义回归神经网络的货运量预测73根据货运量影响因素的分析,分别取国内生产总值(GDP),工业总产值,铁路运输线路长度,复线里程比重,公路运输线路长度,等级公路比重,铁路货车数量和民用载货汽车数量8项指标因素作为网络输入,以货运总量,铁路货运量和公路货运量3项指标因素作为网络输出,构建GRNN,由于训练数据较少,采取交叉验证方法训练GRNN神经网络,并用循环找出最佳的SPREAD。
第9章离散Hopfield神经网络的联想记忆——数字识别81根据Hopfield神经网络相关知识,设计一个具有联想记忆功能的离散型Hopfield神经网络。
要求该网络可以正确地识别0~9这10个数字,当数字被一定的噪声干扰后,仍具有较好的识别效果。
第10章离散Hopfield神经网络的分类——高校科研能力评价90某机构对20所高校的科研能力进行了调研和评价,试根据调研结果中较为重要的11个评价指标的数据,并结合离散Hopfield神经网络的联想记忆能力,建立离散Hopfield高校科研能力评价模型。
第11章连续Hopfield神经网络的优化——旅行商问题优化计算100现对于一个城市数量为10的TSP问题,要求设计一个可以对其进行组合优化的连续型Hopfield神经网络模型,利用该模型可以快速地找到最优(或近似最优)的一条路线。
第12章SVM的数据分类预测——意大利葡萄酒种类识别112将这178个样本的50%做为训练集,另50%做为测试集,用训练集对SVM进行训练可以得到分类模型,再用得到的模型对测试集进行类别标签预测。
第13章SVM的参数优化——如何更好的提升分类器的性能122本章要解决的问题就是仅仅利用训练集找到分类的最佳参数,不但能够高准确率的预测训练集而且要合理的预测测试集,使得测试集的分类准确率也维持在一个较高水平,即使得得到的SVM分类器的学习能力和推广能力保持一个平衡,避免过学习和欠学习状况发生。
第14章SVM的回归预测分析——上证指数开盘指数预测133对上证指数从1990.12.20-2009.08.19每日的开盘数进行回归分析。
第15章SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测141在这个案例里面我们将利用SVM对进行模糊信息粒化后的上证每日的开盘指数进行变化趋势和变化空间的预测。
若您对此书内容有任何疑问,可以凭在线交流卡登录中文论坛与作者交流。
第16章自组织竞争网络在模式分类中的应用——患者癌症发病预测153本案例中给出了一个含有60个个体基因表达水平的样本。
每个样本中测量了114个基因特征,其中前20个样本是癌症病人的基因表达水平的样本(其中还可能有子类),中间的20个样本是正常人的基因表达信息样本,余下的20个样本是待检测的样本(未知它们是否正常)。
以下将设法找出癌症与正常样本在基因表达水平上的区
2024/5/17 0:50:14 5.38MB matlab 神经网络
1
多目标粒子群算法是一种十分有效的多目标寻优算法,关键是gbest和pbest的更新机制问题,希望能给大家带来帮助。
2024/4/19 22:51:04 5KB 多目标 粒子群 MATLAB
1
基于决策的单模目标跟踪方法的关键是及时而稳健的目标机动检测,充分利用目标多普勒观测量能够有效提高机动检测性能。
提出一种集成多普勒观测的目标机动检测算法,利用基于马氏距离的预测寻优方法,克服了多普勒观测噪声水平较高时估计式无解的情况,提高了加速度估计精度;基于奈曼皮尔逊准则设计机动检测器,避免了因目标机动检测的滞后性带来的门限漂移。
仿真实验表明,算法提高了加速度估计的精度和稳健性,显著降低了平均检测延迟,有效提高了机动检测性能。
2024/4/16 16:39:38 1.58MB 研究论文
1
1stOpt一套数学优化分析综合工具软件包。
在非线性回归,曲线拟合,非线性复杂模型参数估算求解,线性/非线性规划等领域傲视群雄,首屈一指,居世界领先地位。
其计算核心是基于七维高科有限公司科研人员十数年的研究成果【通用全局优化算法】(UniversalGlobalOptimization-UGO),该算法之最大特点是克服了当今世界上在优化计算领域中使用迭代法必须给出合适初始值的难题,即用户勿需给出参数初始值,而由1stOpt随机给出,通过其独特的全局优化算法,最终找出最优解。
---------------------------------------------以非线性回归为例,目前世界上在该领域最有名的软件包诸如Matlab,OriginPro,SAS,SPSS,DataFit,GraphPad等,均需用户提供适当的参数初始值以便计算能够收敛并找到最优解。
如果设定的参数初始值不当则计算难以收敛,其结果是无法求得正确结果。
而在实际应用当中,对大多数用户来说,给出(猜出)恰当的初始值是件相当困难的事,特别是在参数量较多的情况下,更无异于是场噩梦。
而1stOpt凭借其超强的寻优,容错能力,在大多数情况下(>90%),从任一随机初始值开始,都能求得正确结果。
2024/3/30 14:24:30 10.1MB 回归 1stopt 规划
1
使用遗传算法,对目标函数进行全局寻优,可以得到全局最优解。
2024/3/28 21:35:11 2KB MATLAB 遗传算法
1
共 112 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡