Myo_gestureArmBand_experiments通过实施scikit-learn机器学习模型,使用MyoArmband进行自定义手势识别。
该项目正在使用NiklasRosenstein在提供的MyoSDK的Python绑定。
给他的仓库一个星星。
一旦按照Niklas的指示安装了绑定,请尝试看看是否可以运行他的示例python脚本之一(在./examples/目录中)。
如果Niklas的示例不起作用,则说明绑定本身做错了什么。
您必须首先弄清楚。
如果成功,那么可以尝试运行我在此处编写的newRunScript.py脚本。
如果Niklas的示例正常工作,而我
1
学习模型预测控制,基本代码
2023/5/17 0:34:34 98KB 模型预测控制
1
无人车辆轨迹跟踪入门必备本书主要引见模型预测控制理论与方法在无人驾驶车辆路径规划与跟踪控制方面的基础应用技术。
由于模型预测控制理论数学抽象特点明显,初涉者往往需要较长时间的探索才能真正理解和掌握,进一步应用到具体研究,则需要更长的过程。
本书详细引见了应用模型预测控制理论进行无人驾驶车辆控制的基础方法,结合路径规划与跟踪实例给出了Matlab仿真代码和详细仿真步骤,并且融入了研究团队在本领域的研究成果。
本书一方面可以作为地面无人车辆、空中无人机、无人艇及移动机器人等无人车辆模型预测控制的研究资料,同时也可以作为学习模型预测控制理论的应用教材。
本书主要引见模型预测控制理论与方法在无人驾驶车辆运动规划与跟踪控制中的应用。
由于模型预测控制理论数学抽象特点明显,初涉者往往需要较长时间的探索才能真正理解和掌握,而进一步应用到具体研究,则需要更长的过程。
本书详细引见了应用模型预测控制理论进行无人驾驶车辆控制的基础方法,结合运动规划与跟踪实例详细说明了预测模型建立、方法优化、约束处理和反馈校正的方法,给出了Matlab仿真代码和详细图解仿真步骤。
所有代码都详细提供了详尽的注解,并且融入了研究团队在本领域的研究成果。
2023/3/11 14:44:08 33.73MB 无人驾驶车辆 模型预测控制 龚建伟
1
很多初入深度学习的学生都会遇到各种环境配置问题,环境搭建不好模型就跑不了,所以这是限制新手的一大难点,MATLAB具有成熟的运行环境,无需配置,这点对于想跑通一个深度学习模型的新手是非常有利的。
所以,本教程手把手教你使用MATLAB中的深度学习框架,完成遥感影像分类的具体操作步骤。
本教程给出完整的代码、操作手擦、原始训练及测试样本,旨在最大限度的简化操作步骤,让深度学习零基础的学生也可以轻松跑通深度学习代码,增加自信心和学习兴味,为遥感影像分类提供一个可借鉴的新型的方法。
1
如果您欣赏我们的工作,请给我们一颗星星什么是Hopsworks?Hopsworks及其功能商店是一个开源的数据密集型AI平台,用于大规模开发和运转机器学习模型。
快速开始bash<(curl-shttps://repo.hops.works/installer/latest/hopsworks-installer.sh)推荐的最低。
大约需要1-2小时才能完成,具体取决于您的带宽。
AzureCLI或GCPCLI安装程序快速入门bash<(curl-shttps://repo.hops.works/installer/latest/hopsworks-cloud-installer.sh)如果您(在Linux机器上)安装了Azure或GCPCLI实用程序,则(Hopsworks-cloud-in
2023/2/17 5:44:20 6.84MB Java
1
《ModelPredictiveControl:TheoryandDesign》这本书是国外大学学习模型预测节制(MPC)的指定教材,出版于2009年。
2023/2/9 15:26:42 2.64MB 教材
1
目标识别是计算机视觉一个重要的研究领域,由此延伸出的车辆型号识别具有重要的实际应用价值,特别是在当今交通状况复杂的大城市,智能交通系统成为发展趋势,这离不开对车辆型号进行识别和分类的工作,本文围绕如何利用计算机视觉的方法进行车辆型号的识别和分类展开了一系列研究:本文对当前的目标识别和分类的特征和算法做了总结和归纳。
分析比较了作为图像特征描述常见的特征算子,总结归纳了他们的提取方法、特征功能以及相互之间的关联。
另外,介绍了在目标识别工作中常用的分类方法,阐述了他们各自的原理和工作方法。
研究了深度神经网络的理论依据,分析比较了深度神经网络不同的特征学习方法,以及卷积神经网络的训练方法。
分析比较不同特征学习方法的特点选取k-means作为本文使用的特征学习方法,利用卷积神经网络结构搭建深度学习模型,进行车辆车型识别工作。
本文为了测试基于深度学习的车辆型号分类算法的功能在30个不同型号共7158张图片上进行实验;
并在相同数据上利用改进了的SIFT特征匹配的算法进行对比实验;
进过实验测试,深度学习方法在进行车型分类的实验中取得94%的正确率,并在与SIFT匹配实验结果对比后进一步证实:深度学习的方法能够应用在车辆型号识别领域
2023/2/8 8:49:32 4.2MB 深度学习 车牌识别
1
线性回归餐厅情感分析目录表描述线性回归机器学习模型可预测评论是肯定的还能否定的。
它以86%的准确度正确预测正确的标签。
技术领域使用以下项目创建项目:python版本:3.9.1NumPy库版本:1.20.0熊猫库版本:1.2.2数据集制作数据集后,每个功能都是代表餐厅评论中所使用单词的存在或不存在的分类特征(0、1)。
常见词(例如“the”,“a”等)未分类。
每行代表一个点(餐厅评论),每列代表其特征(评论中能否使用单词)。
除了评论是肯定的(1)还能否定的(0),每列都是除包含标签的最后一列之外的单独功能。
设置下载.py文件,training_dataset,validation_dataset和权重文件。
将它们放在单个文件或项目文件中。
运行代码将以下内容添加到类文件中:x=logistic_regression("train_d
2021/7/1 3:16:04 4.99MB Python
1
FLIR公司的ADAS可见光-红外数据库(共有5个文件总共15G左右),以及两个其他小数据集。
FLIR的数据库用于无人驾驶汽车的辅助夜视零碎深度学习模型训练。
这是目前业内最齐全的数据集。
1
报告对各种Boosting集成学习模型进行系统测试Boosting集成学习模型将多个弱学习器串行结合,能够很好地兼顾模型的偏差和方差,该类模型在最近几年获得了长足的发展,主要包括AdaBoost、GBDT、XGBoost。
本篇报告我们将对这三种Boosting集成学习模型进行系统性的测试,并分析它们应用于多因子选股的异同,希望对本领域的投资者产生有实意图义的参考价值。
2020/5/17 15:54:58 2.72MB AI Boosting
1
共 53 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡