初学数字图像处理的实验报告以及程序,先频域处理(陷波滤波)再空域(中值)陷波采用的是设置全1矩阵,逐点处理的方法,下面是实验报告的描述,天鹅图像可以完全去除,小狗图像不能完全去除。
图像增强处理:设计2套空间域与频率域结合的图像增强算法,处理以下两组图片中的带噪声图像,去除噪声,提高图像质量。
(1)已知:噪声为随机噪声和周期噪声混合噪声;
(2)要求:a)去噪处理后,计算均方误差评估去噪处理后图像的去噪效果b)撰写完整的科技报告(形式类似科技论文)表述自己的算法设计,算法实现与算法评估过程。
1
一、引言自适应噪声抵消技术是一种能够很好的消除背景噪声影响的信号处理技术,应用自适应噪声抵消技术,可在未知外界干扰源特征,传递途径不断变化,背景噪声和被测对象声波相似的情况下,能够有效地消除外界声源的干扰获得高信噪比的对象信号。
从理论上讲,自适应干扰抵消器是基于自适应滤波原理的一种扩展,简单的说,把自适应滤波器的期望信号输入端改为信号加噪声干扰的原始输入端,而它的输入端改为噪声干扰端,由横向滤波器的参数调节输出以将原始输入中的噪声干扰抵消掉,这时误差输出就是有用信号了。
在数字信号采集、处理中,线性滤波是最常用的消除噪声的方法。
线性滤波容易分析,使用均方差最小准则的线性滤波器能找到闭合解,若噪声干扰类型为高斯噪声时,可达到最佳的线性滤波效果。
计算机论文www.lunwendingzhi.com;
机械毕业论文www.lunwenwanjia.com在实际的数字信号采集中,叠加于信号的噪声干扰往往不是单一的高斯噪声,而线性滤波器所要求的中等程度噪声偏移,使线性滤波器对非高斯噪声的滤波性能下降,为克服线性滤波器的缺点,往往采用非线性滤波器,所以本文采用神经网络对信号进行滤波处理。
二、基于BP算法和遗传算法相结合的自适应噪声抵消器在本文中,作者主要基于自适应噪声对消的原理对自适应算法进行研究,提出了一种新的算法,即BP算法和遗传算法相结合的自适应算法。
作者对BP网络的结构及算法作了一个系统的综述,分析了BP算法存在的主要缺陷及其产生的原因。
传统的BP网络既然是一个非线性优化问题,这就不可避免地存在局部极小问题,网络的极值通过沿局部改善的方向一小步进行修正,力图达到使误差函数最小化的全局解,但实际上常得到的使局部最优点。
管理毕业论文网www.yifanglunwen.com;
音乐毕业论文www.xyclww.com;
英语毕业论文www.lanrenbanjia.com;
学习过程中,下降慢,学习速度缓,易出现一个长时间的误差平坦区,即出现平台。
通过对遗传算法文献的分析、概括和总结,发现遗传算法与其它的搜索方法相比,遗传算法(GA)的优点在于:不需要目标函数的微分值;
并行搜索,搜索效率高;
搜索遍及整个搜索空间,容易得到全局最优解。
所以用GA优化BP神经网络,可使神经网络具有进化、自适应的能力。
BP-GA混合算法的方法出发点为:经济论文www.youzhiessay.com教育论文www.hudonglunwen.com;
医学论文网www.kuailelunwen.com;
(1)利用BP神经网络映射设计变量和目标函数、约束之间的关系;
(2)用遗传算法作实现优化搜索;
(3)遗传算法中适应度的计算采用神经网络计算来实现。
BP-GA混合算法的设计步骤如下:(1)分析问题,提出目标函数、设计变量和约束条件;
(2)设定适当的训练样本集,计算训练样本集;
(3)训练神经网络;
(4)采用遗传算法进行结构寻优;
(5)利用训练好的神经网络检验遗传算法优化结果。
若满足要求,计算结束;
若误差不满足要求,将检验解加入到训练样本集中,重复执行3~5步直到满足要求。
通过用短时傅立叶信号和余弦信号进行噪声对消性能测试,在单一的BP算法中,网络的训练次数、学习速度、网络层数以及每层神经元的节点数都是影响BP网络的重要参数,通过仿真实验可以发现,适当的训练次数可以使误差达到极小值,但是训练次数过多,训练时间太长,甚至容易陷入死循环,或者学习精度不高。
学习速度不能选择的太大,否则会出现算法不收敛,也不能选择太小,会使训练过程时间太长,一般选择为0.01~0.1之间的值,再根据训练过程中梯度变化和均方误差变化值确定。
基于梯度下降原理的BP算法,在解空间仅进行单点搜索,极易收敛于局部极小,而GA的众多个体同时搜索解空间的许多点,因而可以有效的防止搜索过程收敛于局部极小,只有算法的参数及遗传算子的操作选择得当,算法具有极大的把握收敛于全局最优解。
使用遗传算法需要决定的运行参数中种群大小表示种群中所含个体的数量,种群较小时,可提高遗传算法的运算速度,但却降低了群体的多样性,可能找不出最优解;
种群较大时,又会增加计算量,使遗传算法的运行效率降低。
一般取种群数目为20~100;
交叉率控制着交叉操作的频率,由于交叉操作是遗传算法中产生新个体的主要方法,所以交叉率通常应取较大值,但若过大的话,又可能破坏群体的优良模式,一般取0.4~0.99;
变异率也是影响新个体产生的一个因素,变异率小,产生个体少,变异率太大,又会使遗传算法变成随机搜索,一般取变异率为0.0001~0.1。
由仿真结果得知,GA与BP算法的混合算法不论是在运行速度还是在运算精度上都较单纯的BP算法有提高,去噪效果更加明显,在信噪比的改善程度上,混合算法的信噪
2023/6/7 6:07:05 2KB BP算法 遗传算法 matlab 源码
1
卡尔曼滤波在计算机视觉和图像处理、以及导航等处理上有着广泛的用途。
卡尔曼滤波算法让我们在干扰为高斯分布的情况下,得到的测量均方误差最小,也就是测量值扰动最小,看起来最平滑。
2023/6/2 15:20:11 30KB 卡尔曼 滤波算法 C#源码
1
均方误差(mean-squareerror,MSE)是反映估计量与被估计量之间差异程度的一种度量。
设t是根据子样确定的总体参数θ的一个估计量,(θ-t)2的数学期望,称为估计量t的均方误差。
它等于σ2+b2,其中σ2与b分别是t的方差与偏倚。
psnr是“PeakSignaltoNoiseRatio”的缩写,即峰值信噪比,是一种评价图像的客观标准,它具有局限性,一般是用于最大值信号和背景乐音之间的一个工程项目。
2023/3/12 17:25:57 1.3MB 图像质量评价
1
图像增强处理:设计一套空间域与频率域结合的图像增强算法,处理以下任一组图片中的带噪声图像,去除噪声,提高图像质量。
(1)已知:噪声为随机噪声和周期噪声混合噪声;
(2)要求:a)去噪处理后,计算均方误差评估去噪处理后图像的去噪效果b)撰写完整的科技报告(方式类似科技论文)表述自己的算法设计,算法实现与算法评估过程。
2021/8/6 15:35:08 2.62MB 图像增强 混合噪声处理
1
最小均方误差均衡器的Matlab仿真设计,系统引见如何进行最小均方差的理论引见
2021/8/15 16:15:29 331KB 均衡器,MMSE matlab
1
描述贝叶斯在信号检测的应用贝叶斯估计理论在图像处理领域有广泛的应用.结合图像去噪问题,讨论了贝叶斯最大后验概率估计技术,并推导了信号的最小均方误差估计;
在此基础上,提出了一种利用后验均值原则推导维纳滤波表达式的方法.
2017/5/3 6:22:40 281KB 贝叶斯
1
运用最小二乘法拟合y=ae^(bx)型曲线,包括了求对数后拟合和直接拟合两种方法,后者的拟合精确度最高,并给出了均方误差和最大偏差点。
2020/10/9 3:03:54 4KB C 最小二乘法 科学计算
1
几个关于图像质量评价的函数。
均方误差rms,可用于去噪图像和紧缩图像的质量评价
1
论文介绍MIMO-OFDM系统中几种基于导频的信道估计方法。
首先研究了单天线OFDM系统的信道估计算法。
一方面重点关注三种估计准则的原理,仿真表明LMMSE准则具有最佳的功能;
另一方面介绍了几种插值的方法用来恢复非导频处的信道信息。
然后研究了发射分集OFDM系统的信道估计,重点分析了三种导频的设计方案。
仿真表明,使用最佳训练序列可以达到最优的功能,同时占用的资源少,但是复杂度很高。
关键词:无线移动通信;
正交频分复用;
多输入多输出;
信道估计;
最小均方误差;
最佳训练序
1
共 42 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡