这个Matlab工具箱实现32种维数降低技术。
这些技术都可以通过COMPUTE_MAPPING函数或trhoughGUI。
有以下技术可用: -主成分分析('PCA') -线性判别分析('LDA') -多维缩放('MDS') -概率PCA('ProbPCA') -因素分析('因子分析') -Sammon映射('Sammon') -Isomap('Isomap') -LandmarkIsomap('LandmarkIsomap') -局部线性嵌入('LLE') -拉普拉斯特征图('Laplacian') -HessianLLE('HessianLLE') -局部切线空间对准('LTSA') -扩散图('DiffusionMaps') -内核PCA('KernelPCA') -广义判别分析('KernelLDA') -随机邻居嵌入('SNE') -对称随机邻接嵌入('SymSNE') -t分布随机邻居嵌入('tSNE') -邻域保留嵌入('NPE') -线性保持投影('LPP') -随机接近嵌入('SPE') -线性局部切线空间对准('LLTSA') -保形本征映射('CCA',实现为LLE的扩展) -最大方差展开('MVU',实现为LLE的扩展) -地标最大差异展开('地标MVU') -快速最大差异展开('FastMVU') -本地线性协调('LLC') -歧管图表('ManifoldChart') -协调因子分析('CFA') -高斯过程潜变量模型('GPLVM') -使用堆栈RBM预训练的自动编码器('AutoEncoderRBM') -使用进化优化的自动编码器('AutoEncoderEA')此外,工具箱包含6种内在维度估计技术。
这些技术可通过INTRINSIC_DIM函数获得。
有以下技术可用: -基于特征值的估计('EigValue') -最大似然估计器('MLE') -基于相关维度的估计器('CorrDim') -基于最近邻域评估的估计器('NearNb') -基于包装数量('PackingNumbers')的估算器 -基于测地最小生成树('GMST')的估计器除了这些技术,工具箱包含用于预白化数据(函数PREWHITEN),精确和估计样本外扩展(函数OUT_OF_SAMPLE和OUT_OF_SAMPLE_EST)的函数以及生成玩具数据集(函数GENERATE_DATA)的函数。
工具箱的图形用户界面可通过DRGUI功能访问
2024/9/5 12:27:19 1.06MB matlab,降维
1
这篇论文主要探讨了中国古代玻璃制品的风化模型,利用随机森林算法进行数据分析和预测。
文章在数学建模的背景下,获得了山西省一等奖,论文的核心技术包括随机森林优化、数据填充、特征选择、降维模型和分类算法的应用。
对于问题一,研究者处理了数据中的缺失值,使用众数来填充颜色数据。
通过交叉表和卡方检验,确定了表面风化与玻璃类型之间有强相关性,与纹饰有弱相关性,与颜色则无明显关联。
通过观察化学成分的分布,如氧化铅和氧化钾含量,发现不同类型的玻璃具有特定的成分特征。
然后,他们构建了随机森林模型,以风化前后的均值偏差率预测化学成分含量,并验证了预测的准确性。
针对问题二,论文建立了基于重采样的随机森林模型来识别高钾玻璃和铅钡玻璃的分类规律。
通过对14个化学成分的分析,确定了二氧化硅、氧化钾、氧化铅和氧化钡作为关键因素。
通过投影寻踪法降低维度至5个重要成分,并利用改进的k-means聚类算法,将样本分为3个亚类,结果与实际相符。
通过调整聚类数优化损失函数,验证了初始设定的合理性。
在问题三中,研究者加入了有无风化的指标,继续使用随机森林模型预测玻璃类型,测试集预测准确率达到100%。
同时,通过支持向量机(SVM)和贝叶斯判别法结合扰动项,验证了有无风化指标对分类结果的影响,结果显示这个指标的作用不大。
此外,通过正态扰动测试随机森林模型的敏感性,证明模型的稳定性。
对于问题四,论文建立逐步回归模型,寻找不同类别化学成分间的线性关联。
通过VIF方差膨胀因子分析,确定了两类玻璃在二氧化硅、氧化钾、氧化铅和氧化钡等成分上的显著差异性,这与之前的问题二分析结果一致。
总结来说,这篇论文在数学建模的框架下,利用随机森林算法解决了古代玻璃制品风化的建模问题,包括了数据预处理、分类模型建立、特征重要性分析、降维聚类和线性关联研究等多个方面。
这些方法不仅在解决本问题上取得了良好效果,也为类似的历史文物研究提供了有价值的分析工具和思路。
2024/9/2 15:54:31 2.45MB 数学建模 随机森林
1
基于哈希的最近邻居搜索已在许多应用程序中变得有吸引力。
但是,在使用汉明距离排序时,散列中的量化通常会降低判别能力。
此外,对于大规模的视觉搜索,现有的散列方法不能直接支持对具有多个源的数据进行有效搜索,而文献表明自适应地合并来自不同源或视图的补充信息可以显着提高搜索性能。
为了解决这些问题,本文提出了一种新颖且通用的方法来构建具有多个视图的多个哈希表,并在按位和按表级别生成细粒度的排名结果。
对于每个哈希表,引入了查询自适应按位加权,以通过同时利用哈希函数的质量及其对最近邻居搜索的补充来减轻量化损失。
从表格的角度来看,针对不同的数据视图构建了多个哈希表作为联合索引,在该哈希表上,提出了特定于查询的排名融合,以通过散布在图表中对按位排名的所有结果进行排名。
在三个著名基准上进行图像搜索的综合实验表明,与最新方法相比,该方法在单表和多表搜索中可分别实现17.11%和20.28%的性能提升。
2024/8/29 18:15:06 896KB Locality-sensitive hashing; hash code
1
TerraScan模块是用来处理数以千万计的激光点数据,较大内存的计算机次能处理超过1000万个点。
软件里提供的工具可以广泛应用于电力输送、洪水分析、高速公路设计、钻孔勘探、森林普查、数字城市建模等不同领域。
该模块可以从文本文件或二进制文件读入激光点数据,包含如下功能:三维方式浏览点数据:自定义点类,如:地表类、植被类、建筑物类、电线类:,激光点分类:根据自定义规则自动分类激光点:如电力铁塔:交互式判别三维月标,应用围栏刑除不要或错误的点:删除不必要的点,减少数据量
2024/8/19 13:08:52 12.34MB terrasolid
1
spss统计分析和数据挖掘案例视频教程和案例数据集。
迅雷下载链接,亲测可行,800多M。
结合大量的实例对SPSS各模块的统计分析功能及图形功能等进行了详细讲解。
每章均给出大量分析案例,具体内容为SPSS简介、SPSS数据挖掘系统介绍、SPSS数据文件管理、SPSS数据预处理、SPSS基本统计分析、多重反应分析、均值比较与检验、统计图制作、参数检验、回归分析、方差分析、相关分析、聚数分析、判别分析、因子分析、对应分析与结合分析、信度分析、生存分析、对数线性模型、时间序列分析、缺失值分析,以及SPSS在财务智能、数据预测、股市分析、社会经济分析、金融数据分析等方面的数据挖掘应用。
2024/8/19 0:29:51 98B spss19 视频教程 案例 数据集
1
模式分类习题答案,贝叶斯鞠策、最大似然估计、非参数技术、线性判别函数
2024/8/6 22:22:46 1.07MB 模式分类
1
原创,测试识别率0.99,重构图像完全比不上PCA,但能满足分类要求。
可下载后直接运行,并保存特征向量数据
2024/7/21 9:08:02 5.1MB LDA 人脸识别
1
算法流程:本系统运用PCA算法来实现人脸特征提取,然后通过计算欧式距离来判别待识别测试人脸,本个系统框架图如下:图:人脸识别系统框架图整个系统的流程是这样的,首先通过图像采集建立人脸库,这个人脸库里的人脸图像必须是格式及像素统一的,然后针对库里的人脸进行人脸训练,利用PCA进行人脸特征提取,获取特征矩阵向量组,将测试人脸投缘到特征子空间中,运用欧氏距离,在人脸库里查找相应的人脸图像,并输出。
二、算法介绍基于PCA算法的人脸特征提取2.1PCA的基本原理PCA中文全称主成分分析法(PrincipalComponen
1
依照某AR模型生成一段数据(1000),同时用另一MA模型生成一段数据(200),合成一段1200长度的数据1)依赖于这1200个数据的前800个数据,识别这段数据背后的AR模型。
2)在1)的基础上对新数据进行预测,并通过后续的400个数据进行判别(数据模型是否匹配)或者模型的修正(修正只需要提供思路和方法)。
2024/7/19 12:53:17 133KB MATLAB AR模型
1
看大小就知道很全啦查看地址https://blog.csdn.net/qq_43333395/article/details/98508424目录:数据结构:1.RMQ(区间最值,区间出现最大次数,求区间gcd)2.二维RMQ求区间最大值(二维区间极值)3.线段树模板(模板为区间加法)(线段树染色)(区间最小值)4.线性基(求异或第k大)5.主席树(静态求区间第k小)(区间中小于k的数量和小于k的总和)(区间中第一个大于或等于k的值)6.权值线段树(求逆序对)7.动态主席树(主席树+树状数组)(区间第k大带修改)8.树上启发式合并(查询子树的优化)9,树状数组模板(求区间异或和,求逆序对)扩展10.区间不重复数字的和(树状数组)11.求k维空间中离所给点最近的m个点,并按顺序输出(KD树)12.LCA(两个节点的公共父节点)动态规划:1.LIS(最长上升子序列)2.有依赖的背包(附属关系)3.最长公共子序列(LCS)4.树形DP5.状压DP-斯坦纳树6.背包7.dp[i]=min(dp[i+1]…dp[i+k]),multset博弈:1.NIM博弈(n堆每次最少取一个)2.威佐夫博弈(两堆每次取至少一个或一起取一样的)3.约瑟夫环4.斐波那契博弈(取的数依赖于对手刚才取的数)5.sg函数数论:1.数论素数检验:普通素数判别线性筛二次筛法求素数米勒拉宾素数检验2.拉格朗日乘子法(求有等式约束条件的极值)3.裂项(多项式分子分母拆分)4.扩展欧几里得(ax+by=c)5.勾股数(直角三角形三边长)6.斯特林公式(n越大越准确,求n!)7.牛顿迭代法(求一元多次方程一个解)8.同余定理(a≡b(modm))9.线性求所有逆元的方法求(1~pmodp的逆元)10.中国剩余定理(n个同余方程x≡a1(modp1))11.二次剩余((ax+k)2≡n(modp)(ax+k)^2≡n(modp)(ax+k)2≡n(modp))12.十进制矩阵快速幂(n很大很大的时候)13.欧拉函数14.费马小定理15.二阶常系数递推关系求解方法(a_n=p*a_{n-1}+q*a_{n-2})16.高斯消元17.矩阵快速幂18.分解质因数19.线性递推式BM(杜教)20.线性一次方程组解的情况21.求解行列式的逆矩阵,伴随矩阵,矩阵不全随机数不全组合数学:1.循环排列(与环有关的排列组合)计算几何:1.三角形(求面积))2.多边形3.三点求圆心和半径4.扫描线(矩形覆盖求面积)(矩形覆盖求周长)5.凸包(平面上最远点对)6.求凸多边形的直径7.求凸多边形的宽度8.求凸多边形的最小面积外接矩形9.半平面交图论:基础:前向星1.最短路(优先队列dijkstra)2.判断环(tarjan算法)3.最小生成树(Kruskal模板)4.最小生成树(Prim)5.Dicnic最大流(最小割)6.无向图最小环(floyd)7.floyd算法的动态规划(通过部分指定边的最短路)8.图中找出两点间的最长距离9.最短路(spfa)10.第k短路(spfa+A*)11.回文树模板12.拓扑排序(模板)13.次小生成树14.最小树形图(有向最小生成树)15.并查集(普通并查集,带权并查集,)16.求两个节点的最近公共祖先(LCA)17.限制顶点度数的MST(k度限制生成树)18.多源最短路(spfa,floyd)19.最短路(输出字典序最小)20.最长路图论题目简述字符串:1.字典树(多个字符串的前缀)2.KMP(关键字搜索)3.EXKMP(找到S中所有P的匹配)4.马拉车(最长回文串)5.寻找两个字符串的最长前后缀(KMP)6.hash(进制hash,无错hash,多重hash,双hash)7.后缀数组(按字典序排字符串后缀)8.前缀循环节(KMP的fail函数)9.AC自动机(n个kmp)10.后缀自动机小技巧:1.关于int,double强转为string2.输入输出挂3.低精度加减乘除4.一些组合数学公式5.二维坐标的离散化6.消除向下取整的方法7.一些常用的数据结构(STL)8.Devc++的使用技巧9.封装好的一维离散化10.Ubuntu对拍程序11.常数12.Codeblocks使用技巧13.java大数叮嘱共173页
2024/5/29 4:58:24 8.42MB ACM ICPC CCPC
1
共 159 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡