数据挖掘算法算法目录18大DM算法包名 目录名 算法名AssociationAnalysis DataMining_Apriori Apriori-关联规则挖掘算法AssociationAnalysis DataMining_FPTree FPTree-频繁模式树算法BaggingAndBoosting DataMining_AdaBoost AdaBoost-装袋提升算法Classification DataMining_CART CART-分类回归树算法Classification DataMining_ID3 ID3-决策树分类算法Classification DataMining_KNN KNN-k最近邻算法工具类Classification DataMining_NaiveBayes NaiveBayes-朴素贝叶斯算法Clustering DataMining_BIRCH BIRCH-层次聚类算法Clustering DataMining_KMeans KMeans-K均值算法GraphMining DataMining_GSpan GSpan-频繁子图挖掘算法IntegratedMining DataMining_CBA CBA-基于关联规则的分类算法LinkMining DataMining_HITS HITS-链接分析算法LinkMining DataMining_PageRank PageRank-网页重要性/排名算法RoughSets DataMining_RoughSets RoughSets-粗糙集属性约简算法SequentialPatterns DataMining_GSP GSP-序列模式分析算法SequentialPatterns DataMining_PrefixSpan PrefixSpan-序列模式分析算法StatisticalLearning DataMining_EM EM-期望最大化算法StatisticalLearning DataMining_SVM SVM-支持向量机算法其他经典DM算法包名 目录名 算法名Others DataMining_ACO ACO-蚁群算法Others DataMining_BayesNetwork BayesNetwork-贝叶斯网络算法Others DataMining_CABDDCC CABDDCC-基于连通图的分裂聚类算法Others DataMining_Chameleon Chameleon-两阶段合并聚类算法Others DataMining_DBSCAN DBSCAN-基于密度的聚类算法Others DataMining_GA GA-遗传算法Others DataMining_GA_Maze GA_Maze-遗传算法在走迷宫游戏中的应用算法Others DataMining_KDTree KDTree-k维空间关键数据检索算法工具类Others DataMining_MSApriori MSApriori-基于多支持度的Apriori算法Others DataMining_RandomForest RandomForest-随机森林算法Others DataMining_TAN TAN-树型朴素贝叶斯算法Others DataMining_Viterbi Viterbi-维特比算法18大经典DM算法18大数据挖掘的经典算法以及代码实现,涉及到了决策分类,聚类,链接挖掘,关联挖掘,模式挖掘等等方面,后面都是相应算法的博文链接,希望能够协助大家学。
目前追加了其他的一些经典的DM算法,在others的包中涉及聚类,分类,图算法,搜索算等等,没有具体分类。
C4.5C4.5算法与ID3算法一样,都是数学分类算法,C4.5算法是ID3算法的一个改进。
ID3算法采用信息增益进行决策判断,而C4.5采用的是增益率。
详细介绍链接CARTCART算法的全称是分类回归树算法,他是一个二元分类,采用的是类似于熵的基尼指数作为分类决策,形成决策树后之后还要进行剪枝,我自己在实现整个算法的时候采用的是代价复杂度算法,详细介绍链接KNNK最近邻算法。
给定一些已经训练好的数据,输入一个新的测试数据点,计算包含于此测试数据点的最近的点的分类情况,哪个分类的类型占多数,则此测试点的分类与此相同,所以在这里,有的时候可以复制不同的分类点不同的权重。
近的点的权重大点,远的点自然就小点。
详细介绍链接NaiveBayes朴素贝叶斯算法。
朴素贝叶斯算法是贝叶斯算法里面一种比较简单的分类算法,用到了一个比较重要的贝叶斯定理,用一句简单的话概括就是条件概率的相互转换推导
2023/3/5 1:58:33 220KB 数据挖掘 18大 算法 DM
1
用Python写了一个Apriori算法模块,测试数据用的是R里面的经典数据集Groceries.csv食品杂货店。
对该数据集进行关联分析,并对结果进行打印,分别输出了各项集情况,关联规则和最受欢迎的前五个商品。
大家可以根据本身的需求修改代码。
1
发掘关联规则中AprioriTid算法的改进.pdf
1
FP-tree是一个数据库里跟产生频繁集有关的信息的紧缩表示。
该实现基于Windows平台,编程工具是VisualC++6.0,许多地方还用到了C++的标准模板库。
另外还附带c#和matlab版本
2018/8/26 12:51:28 2.92MB fpgrowth c++ c# matlab
1
数据挖掘实验报告、基于R言语实现,包括数据、算法描述、代码、实验分析、软件Rstudio等内容,分类算法包括随机森林、Adaboosting、K近邻、神经网络、支持向量机、朴素贝叶斯等,聚类算法包括K-Means聚类、层次聚类、SOM网络聚类和关联规则。
2018/3/2 5:45:02 92.32MB Rprogram datamining
1
数据挖掘实验报告、基于R言语实现,包括数据、算法描述、代码、实验分析、软件Rstudio等内容,分类算法包括随机森林、Adaboosting、K近邻、神经网络、支持向量机、朴素贝叶斯等,聚类算法包括K-Means聚类、层次聚类、SOM网络聚类和关联规则。
2018/3/2 5:45:02 92.32MB Rprogram datamining
1
library(arules)library(Matrix)library(arules)library(arulesViz)library(grid)library(arulesViz)data('SunBai')summary(SunBai)#inspect函数查看SunBai数据集的前5次买卖记录inspect(SunBai[1:5])#itemFrequency()函数可以查看商品的买卖比例itemFrequency(SunBai[,1:3])#support=0.1,表示支持度至少为0.1itemFrequencyPlot(SunBai,support=0.1)#topN=20,表示支持度排在前20的商品itemFrequencyPlot(SunBai,topN=20)#利用transactionInfo函数查看前六数据head(transactionInfo(SunBai))
2020/3/15 10:06:43 835B R语言 关联规则 apriori算法
1
JAVA实现的关联规则的数据挖掘Apriori算法,采用图形化界面方式,可以实现从布尔类型数据库中找出关联规则
2018/1/9 7:36:40 20KB 数据挖掘 Apriori算法 关联规则
1
本人写的数据挖掘关联规则Apriori算法matlab实现分了许多个文件结构清晰
1
整理了我一个星期,终于搞出来了,某超市八月份的销售购物篮数据集,其中第一列是小票号+柜员机号+收银员号,其他的是一些物品分类的项目,可以用于clementine的关联分析。
但是由于分类比较大,所以无法挖掘出排斥商品的关联规则。
2019/4/26 23:23:55 4MB 购物篮 超市 关联分析 数据集
1
共 44 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡