ofdm符号定时与频偏联合估计算法matlab实现,基于最大似然估计算法。
2025/4/14 14:23:45 3KB ofdm
1
信号与系统最新的教科书,mit教授A.V.Oppenheim的又一力作。
介绍了信号与系统分析的基本理论,重点讲述了系统的线性状态空间模型分析、系统的概率模型,假设检验和系统参数估计等内容。
将于2016年正式出版。
2025/4/14 3:24:44 6.09MB signals systems system analysis
1
主要用于OFDM的频偏估计,利用导频的相关性
2025/4/11 15:28:03 7KB OFDM 频偏
1
提出了一种新的变分图像模型,结合了Curvelet收缩方法和总变分(TV)功能,可用于图像恢复。
为了抑制阶梯效应和类似Curvelet的伪影,我们使用多尺度Curvelet收缩来计算初始估计图像,然后提出一个新的梯度保真度项,该项旨在迫使所需图像的梯度接近Curvelet逼近梯度。
然后,我们介绍了Euler-Lagrange方程,并对数学性质进行了研究。
为了提高保留边缘和纹理细节的能力,在梯度下降流算法的迭代过程中自适应估计空间变化参数。
数值实验表明,我们提出的方法在减轻阶梯效应和曲​​线样伪像的同时,保留了精细的细节方面具有良好的性能。
2025/4/11 10:53:58 642KB 研究论文
1
电力系统状态估计经典书籍,比较清晰的版本。
2025/3/31 6:38:39 9.89MB 状态估计
1
基于参考信号自动估计的超声图像稀疏反卷积方法
2025/3/29 11:56:54 512KB 研究论文
1
第1章绪论第2章SAR成像原理2.1引言2.2SAR系统参数2.3单脉冲距离向处理2.4线性调频脉冲与脉冲压缩2.5SAR方位向处理2.6SAR线性测量系统2.7辐射定标2.8小结参考文献附录2A星载SAR的方位向处理第3章图像缺陷及其校正3.1引言3.2SAR成像散焦3.2.1自聚焦方法3.2.2自聚焦技术的精确性3.2.3散射体性质对自聚焦的影响3.3几何失真与辐射失真3.3.1物理原因及关联的失真3.3.2基于信号的MOCO方法3.3.3天线稳定性3.4残留SAR成像误差3.4.1残留的几何与辐射失真3.4.2旁瓣水平3.5基于信号的MOCO方法的改进3.5.1包含相位补偿的迭代自聚焦3.5.2较小失真的高频跟踪3.5.3常规方法与基于信号方法相结合的MOC0方法3.6小结参考文献第4章SAR图像的基本特性4.1引言4.2SAR图像信息的特质4.3单通道图像类型与相干斑4.4多视处理估计RCS4.5相干斑的乘性噪声模型4.6RCS估计——成像与噪声的影响4.7SAR成像模型的结果4.8空间相关性对多视处理的影响4.9系统引入空间相关性的补偿4.9.1子采样4.9.2预平均4.9.3插值4.10空间相关性估计:平稳性与空间平均4.11相干斑模型的局限性4.12多维SAR图像4.13小结参考文献第5章数据模型5.1引言5.2数据特征5.3经验数据分布5.4乘积模型5.4.1RCS模型5.4.2强度概率密度函数5.5概率分布模型的比较5.6基于有限分辨率成像的目标RCS起伏5.7数据模型的局限性5.8计算机仿真5.9小结参考文献第6章RCS重建滤波器6.1引言6.2相干斑模型和图像质量度量6.3贝叶斯重建6.4基于相干斑模型的重建6.4.1多视处理相干斑抑制6.4.2最小均方误差相干斑抑制……第7章RCS分类与分割第8章纹理信息提取第9章相关纹理第10章目标信息第11章多通道SAR数据的信息处理第12章多维SAR图像分析技术第13章SAR图像的分类第14章现状与前景分析
2025/3/28 18:57:23 36.01MB 合成孔径雷达 SAR雷达成像
1
经济金融计量学中的非参数估计技术,用R软件和S-PLUS软件,书中有代码
2025/3/25 11:33:15 10.01MB 金融计量
1
画出脉冲响应估计值及其三次插值曲线系统的输出与模型的输出误差也基本达到稳定状态给出了被辨识参数的个数为5时的辨识结果利用上面给出的20对输入输出数据
2025/3/23 15:21:53 1KB 梯度校正 参数辨识
1
用MUSIC算法实现DOA估计,本代码经测试可以正常实现DOA估计,并且效果稳定,有画出DOA估计的谱峰图。
2025/3/23 5:12:50 2KB DOA估计 mucis算法
1
共 815 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡