静脉识别,生物识别的一种。
静脉识别系统一种方式是通过静脉识别仪取得个人静脉分布图,依据专用比对算法从静脉分布图提取特征值,另一种方式通过红外线CCD摄像头获取手指、手掌、手背静脉的图像,将静脉的数字图像存贮在计算机系统中,实现特征值存储。
静脉比对时,实时采取静脉图,运用先进的滤波、图像二值化、细化手段对数字图像提取特征,采用复杂的匹配算法同存储在主机中静脉特征值比对匹配,从而对个人进行身份鉴定,确认身份。
2024/9/3 5:18:33 405KB 静脉识别 matlab 图像处理
1
java课程设计——记忆测试系统。
记忆测试系统是通过回忆法测试记忆能力,测试手段分为初级、中级、高级三个级别。
记忆测试系统设计要求如下:1、单击“选择级别”菜单可以选择初级、中级或高级。
2、单击“查看排行榜”菜单可以查看初级记忆榜、中级记忆榜或高级记忆榜,通过记忆榜存储每个级别的成绩。
3、选择级别后,将出现相应级别的测试区。
4、m*n个方块组成的测试区中有m个图标,每个图标重复出现n次,并且随机分布在测试区中的m*n个方块上。
5、测试区能显示用户的同时,并根据级别的不同,提示用户必须用鼠标连续单击出多个图标相同的方块。
6、测试区有提示图标所在位置的功能。
7、连续单击出级别所要求的若干个图标相同的方块后,将弹出保存成绩对话框,用户可以通过该对话框选择是否将自己的成绩保存到成绩表中。
8、单击“选择图标”菜单可重新选择方块图标样式,既可以重新选择m个图标。
2024/9/3 5:47:58 5.93MB java课程设计 记忆测试系统
1
配以插图方式介绍NUMECA软件进行分布式和集中式并行运算的方法和步骤
2024/9/3 4:57:10 658KB NUMECA 并行计算
1
这篇论文主要探讨了中国古代玻璃制品的风化模型,利用随机森林算法进行数据分析和预测。
文章在数学建模的背景下,获得了山西省一等奖,论文的核心技术包括随机森林优化、数据填充、特征选择、降维模型和分类算法的应用。
对于问题一,研究者处理了数据中的缺失值,使用众数来填充颜色数据。
通过交叉表和卡方检验,确定了表面风化与玻璃类型之间有强相关性,与纹饰有弱相关性,与颜色则无明显关联。
通过观察化学成分的分布,如氧化铅和氧化钾含量,发现不同类型的玻璃具有特定的成分特征。
然后,他们构建了随机森林模型,以风化前后的均值偏差率预测化学成分含量,并验证了预测的准确性。
针对问题二,论文建立了基于重采样的随机森林模型来识别高钾玻璃和铅钡玻璃的分类规律。
通过对14个化学成分的分析,确定了二氧化硅、氧化钾、氧化铅和氧化钡作为关键因素。
通过投影寻踪法降低维度至5个重要成分,并利用改进的k-means聚类算法,将样本分为3个亚类,结果与实际相符。
通过调整聚类数优化损失函数,验证了初始设定的合理性。
在问题三中,研究者加入了有无风化的指标,继续使用随机森林模型预测玻璃类型,测试集预测准确率达到100%。
同时,通过支持向量机(SVM)和贝叶斯判别法结合扰动项,验证了有无风化指标对分类结果的影响,结果显示这个指标的作用不大。
此外,通过正态扰动测试随机森林模型的敏感性,证明模型的稳定性。
对于问题四,论文建立逐步回归模型,寻找不同类别化学成分间的线性关联。
通过VIF方差膨胀因子分析,确定了两类玻璃在二氧化硅、氧化钾、氧化铅和氧化钡等成分上的显著差异性,这与之前的问题二分析结果一致。
总结来说,这篇论文在数学建模的框架下,利用随机森林算法解决了古代玻璃制品风化的建模问题,包括了数据预处理、分类模型建立、特征重要性分析、降维聚类和线性关联研究等多个方面。
这些方法不仅在解决本问题上取得了良好效果,也为类似的历史文物研究提供了有价值的分析工具和思路。
2024/9/2 15:54:31 2.45MB 数学建模 随机森林
1
分布式电源接入系统典型设计(2016版)
2024/9/2 11:04:26 4.98MB 分布式电源
1
对分布于二维空间的线性可分样本进行分类,画出了其中每个类的判决函数、判决面。
并拓展到非线性可分或者不可分!
1
shearlet变换的matlab代码。
图像经过某种离散变化后的能力分布体现了图像的变换特征,从无失真压缩的角度考虑,变换的目的是希望图像经离散变换后能力尽可能的集中在少量的几个系数中,即具有能量聚集性,由此可得到较高的压缩比。
图像经过Shearlets变换后,能量的分布会随着变换尺度n的变换尺度呈现出一定的规律。
2024/9/1 6:49:54 13.87MB shearlet变换
1
Hadoop3HDFS完全分布式搭建.docx
2024/8/31 3:39:43 631KB Hadoop
1
Nacos是Alibaba公司推出的开源工具,用于实现分布式系统的服务发现与配置管理。
英文全称DynamicNamingandConfigurationService,Na为Naming/NameServer即注册中心,co为Configuration即配置中心,Service是指该注册/配置中心都是以服务为核心。
服务(Service)是Nacos世界的一等公民。
2024/8/30 19:11:15 141.58MB Nacos 注册中心 配置中心 服务发现
1
到靶能量和光斑分布参数是评价高能激光系统性能指标的重要参数,为准确测量中红外高能激光系统远场能量和功率密度的时空分布,采用热吸收和光电探测相结合的测量方法,研制了可用于大面积、长脉冲中红外高能激光测量的复合式光斑探测阵列。
探测阵列由石墨热吸收单元和PbSe光电探测器阵列、信号调理放大电路、数据采集单元和信号处理单元等几部分组成,有效测量面积为22cm×22cm,光斑测量空间分辨率为2.2cm,时间分辨率为20ms,能量测量不确定度小于10%,功率密度测量不确定度小于15%。
采用该系统,可实现高能量、大面积中红外高能激光光斑参数的综合测量。
2024/8/30 19:09:14 4.48MB 探测器 中红外激 探测阵列 光电量热
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡