为实现自然条件下棉花叶片的精准分割,提出一种粒子群(Particle swarm optimization,PSO)优化算法和K-means聚类算法混合的棉花叶片图像分割方法。
本算法将棉花叶片图像在RGB颜色空间模式下采用二维卷积滤波进行去噪预处理,并将预处理后的彩色图像从RGB转换到目标与背景差异性最大的Q分量、超G分量、a*分量;
随后在K均值聚类的一维数据空间中,利用PSO算法向全局像素解的子空间搜寻,通过迭代搜寻得到全局最优解,确定最佳聚类中心点,改善K均值聚类的收敛效果;
最后,对像素进行聚类划分,从而得到棉花叶片分割结果。
按照不同天气条件和不同背景采集了1 200幅棉花叶片样本图像,对本研究算法进行测试。
试验结果表明:该算法对于晴天、阴天和雨天图像中目标(棉花叶片)分割准确率分别达到92.39%、93.55%、88.09%,总体平均分割精度为91.34%,并与传统K均值算法比较,总体平均分割精度提高了5.41%。
分割结果表明,本研究算法能够对3种天气条件(晴天、阴天、雨天)与4种复杂背景(白地膜、黑地膜、秸秆、土壤)特征混合的棉花叶片图像实现准确分割,为棉花叶片的特征提取与病虫害识别等后续处理提供支持。
2024/4/14 16:22:47 2.56MB pdf
1
2,1,7卷积码的viterbi译码算法的FPGA实现,内容详细,而且附带源代码.rar
2024/4/13 12:54:29 1.59MB 卷积码
1
图像理解中的卷积神经网络pdf图像理解中的卷积神经网络pdf
2024/4/13 3:42:47 894KB 图像理解 卷积神经网络
1
卷积神经网络python实现。
卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一类包含卷积或相关计算且具有深度结构的前馈神经网络(FeedforwardNeuralNetworks),是深度学习(deeplearning)的代表算法之一[1-2]。
由于卷积神经网络能够进行平移不变分类(shift-invariantclassification),因此也被称为“平移不变人工神经网络(Shift-InvariantArtificial
2024/4/12 15:49:47 31KB python 卷积 神经网络实现
1
Java核心技术卷I基础知识(原书第10版)JavaSE8全面更新,同时修正了第9版中的不足,系统全面讲解了Java语言的核心概念、语法、重要特性和开发方法,包含大量案例,实践性强。
2024/4/12 8:28:19 41B java核心技术 中文 第10版
1
卷积神经网络结构示意图,可以作为一个参考进行修改,包含有卷积层,池化层,Flatten,全连接层和softmax
2024/4/12 5:04:24 52KB 神经网络结构图
1
维纳滤波和盲去卷积算法,复原图像,matlab
2024/4/12 0:09:03 2.4MB matlab
1
在传统的NCC算法上采用卷积加速
2024/4/11 21:43:06 711KB ncc matlab 加速算法
1
当年考研时看的资料,刷题必备。
天勤系列。
虽说是2016年的,但是历年考研的知识范围不变,还是有些参考价值的。
2024/4/10 19:57:55 10.67MB 计算机考研 天勤 模拟卷
1
RNN卷积神经网络原理,LStm原理详解,很详细的材料,值得拥有
2024/4/3 6:10:48 323KB 深度学习 算法原理
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡