目录第1章 HTML5简介11.1 HTML历史与HTML521.2 HTML5的优势61.3 HTML5的基本结构和语法变化81.4 本章小结12第2章 HTML5的常用元素与属性142.1 HTML5保留的常用元素152.2 HTML5增强的iframe元素342.3 HTML5保留的通用属性402.4 HTML5新增的通用属性442.5 HTML5新增的结构元素482.6 HTML5新增的语义元素552.7 HTML5头部和元信息592.8 HTML5新增的拖放API632.9 本章小结71第3章 HTML5表单相关的元素和属性723.1 HTML原有的表单及表单控件733.2 HTML5新增的表单属性833.3 HTML5新增的表单元素903.4 HTML5新增的客户端校验963.5 本章小结100第4章 HTML5的绘图支持1014.1 使用canvas元素1024.2 绘图1034.3 坐标变换1184.4 控制叠加风格1234.5 控制填充风格1244.6 位图处理1284.7 输出位图1324.8 动画制作1334.9 本章小结136第5章 HTML5的多媒体支持1375.1 使用audio和video元素1385.2 使用JavaScript脚本控制媒体播放1415.3 事件监听1445.4 track元素1465.5 本章小结149第6章 级联样式单与CSS选择器1506.1 样式单概述1516.2 CSS样式单的基本使用1526.3 CSS选择器1586.4 伪元素选择器1676.5 CSS3新增的伪类选择器1766.6 在脚本中修改显示样式1956.7 本章小结197第7章 字体与文本相关属性1987.1 字体相关属性1997.2 CSS3支持的颜色表示方法2057.3 文本相关属性2067.4 CSS3新增的服务器字体2127.5 本章小结215第8章 背景、边框和边距相关属性2168.1 盒模型简介2178.2 背景相关属性2178.3 使用渐变背景2268.4 边框相关属性2398.5 使用opacity控制透明度2468.6 padding和margin相关属性2478.7 本章小结249第9章 大小、定位、轮廓相关属性2509.1 width、height相关属性2519.2 定位相关属性2559.3 轮廓相关属性2579.4 用户界面和滤镜属性2589.5 本章小结263第10章 盒模型与布局相关属性26410.1 盒模型和display属性26510.2 对盒添加阴影27510.3 布局相关属性27810.4 CSS3新增的多栏布局28510.5 使用弹性盒布局28910.6 本章小结306第11章 表格、列表相关属性及mediaquery30711.1 表格相关属性30811.2 列表相关属性31311.3 控制光标的属性31611.4 mediaquery和响应式布局31711.5 本章小结323第12章 变形与动画相关属性32412.1 CSS3提供的变形支持32512.2 CSS3新增的3D变换33712.3 CSS3提供的Transition动画34112.4 CSS3提供的Animation动画34512.5 本章小结349第13章 JavaScript语法详解35013.1 JavaScript简介35113.2 数据类型和变量35613.3 基本数据类型36413.4 复合类型37613.5 运算符38113.6 语句39113.7 流程控制39513.8 函数40313.9 函数的参数处理42513.10 面向对象42913.11 创建对象43713.12 本章小结443第14章 DOM编程详解44414.1 DOM模型概述44514.2 DOM模型和HTML文档44614.3 访问HTML元素44814.4 修改HTML元素45614.5 增加HTML元素45814.6 删除HTML元素46314.7 传统的DHTML模型46714.8 使用window对象46914.9 navigator和地理定位47914.10 HTML5增强的HistoryAPI48514.11 使用do
2025/6/28 17:23:46 132.38MB web
1
郭志刚《社会统计分析方法SPSS软件应用》光盘数据第二版
2025/6/28 17:22:25 3.12MB SPSS 统计 数据
1
美国国防部标准方法window痕迹彻底擦除软件
2025/6/28 15:25:19 2.11MB Windows 隐私 工具
1
在使用Microsoftvisualstudio2017开发串口调试工具时,使用的是mscomm控件,这个控件默认支持的串口号范围1-16,如果串口号超过16会出现Invalidportnumber。
解决这个问题是修改MSCOMM32.OCX中的一个字节(可用编辑软件与之前的进行比对)。
附加还有一个bat批处理文件(需要将注释的语句开启-_-),使用方法:1、将MSCOMM32.OCX文件与此批处理文件放置同一个文件夹中。
2、右键以管理员身份允许此批处理文件,会自动将MSCOMM32.OCX进行安装,如果安装成功,会出现组件安装成功提示。
2025/6/28 12:34:37 48KB 串口 vs mscomm
1
Python天天生鲜项目源代码及部署文件毕业设计。
压缩包里包含使用Python语言下的django框架编写的天天生鲜项目,为了方便使用,里面有写好的部署文档。
可以根据部署文件的内容进行项目搭建。
Python项目毕设代码部署方法
2025/6/28 12:28:38 5.26MB Python 项目 毕设  代码
1
科瑞计算簿是非常实用的工程造价计算器,是完全免费表格法计算软件。
具有重名变量、中文变量能力,具有多种统计方式。
可以打开所有科瑞定额库,支持多步撤消与恢复。
破解版可以打印、导出EXCEL文件。
破解方法在压缩包里
2025/6/28 5:44:38 7.75MB 科瑞 计算簿 破解版 1.43
1
介绍了偏微分方程数值解的两类主要方法:有限差分方法和有限元方法.其内容包括有限差分方法的基本概念;
双曲型方程、抛物型方程及椭圆型方程的有限差分方法;
数学物理方程的变分原理;
有限元离散方法以及其他一些相关的课题等.在介绍每种具体方法的同时,还给出了相应的理论分析.各章附有习题.最高清,最完整
2025/6/28 0:42:47 36.02MB 偏微分 数值解 清华版
1
IT售前咨询白皮书,做售前的必看.售前咨询,作为销售人员的技术支持,其职责是以专业的方法理解客户业务、分析客户需求,将管理理论、客户需求、IT技术和公司产品相结合提供解决方案,并将良好的公司形象、产品形象和服务能力传达给客户,从而达到有效战胜竞争对手、促成签章并合理降低项目风险的目标。
近代学者王国维认为,“古今之成大事业、大学问者,必经三种境界。
”“昨夜西风凋敝树,独上高楼,望尽天涯路”,是为第一境界;
“衣带渐宽终不悔,为伊消得人憔悴”,是为第二境界;
“众里寻他千百度,蓦然回首,那人却在灯火阑珊处”,是为最终境界。
这不只是做诗的境界,做学问的境界,从事艺术创造的境界,也是我们生活的境界,事业的境界,人生的境界。
售前咨询之道亦然。
售前是作为公司的技术代表,其主要职责是协同销售人员让客户接受公司的解决方案。
但如何提供解决方案,亦存在几种不同的境界。
第一重境界:从产品到方案。
......
2025/6/27 18:10:46 486KB IT 售前 咨询 白皮书
1
《数字图像处理——应用篇》是由谷口庆治编著的一本深入探讨图像处理技术的专业书籍,这本书在图像处理领域具有很高的权威性。
全书完整PDF版本是唯一可获取的全面资源,对于学习和研究图像处理技术的读者来说,无疑是一份宝贵的资料。
图像处理是计算机科学中的一个重要分支,它涉及了将模拟图像转换为数字形式,以及对数字图像进行各种操作以改善质量或提取有用信息。
在《数字图像处理——应用篇》中,作者谷口庆治详细阐述了这一领域的关键概念和技术,包括图像获取、颜色模型、图像增强、图像复原、图像分割、特征提取以及模式识别等核心主题。
1.**图像获取**:这部分介绍了图像传感器的工作原理,如CCD和CMOS,以及扫描仪和相机的成像过程。
同时,还涵盖了像素的概念、采样理论和量化过程。
2.**颜色模型**:书中详细讨论了RGB、CMYK、HSV、YCbCr等常见颜色模型,以及它们在不同应用场景下的选择和转换方法。
3.**图像增强**:通过滤波器、直方图均衡化等手段改善图像的视觉效果,提升图像质量,这部分包括线性和非线性滤波、对比度增强等技术。
4.**图像复原**:针对图像退化问题,如噪声、模糊等,提出了一系列恢复技术,如Wiener滤波、反卷积等。
5.**图像分割**:这是图像分析的关键步骤,包括阈值分割、区域生长、边缘检测等方法,用于将图像划分为有意义的部分。
6.**特征提取**:为了识别和理解图像,需要从图像中提取有意义的特征,如角点、边缘、纹理和形状,这些特征可用于后续的模式识别和对象识别。
7.**模式识别**:利用机器学习算法,如支持向量机、神经网络、决策树等,对图像中的模式进行分类和识别,是图像处理领域的高阶应用,广泛应用于OCR文字识别、人脸识别、医学影像分析等领域。
8.**OCR文字识别**:光学字符识别技术是模式识别的一个实例,通过识别图像中的文字并转化为可编辑文本,该技术在文档自动化处理、图书数字化等方面有着广泛的应用。
压缩包中的文件名表明资源分为了三个部分:`数字图像处理——应用篇.part1.rar`、`数字图像处理——应用篇.part2.rar`和`数字图像处理——应用篇.part3.rar`。
通常,这种分卷压缩格式是为了便于大文件的传输和存储,用户需要下载所有部分并使用合适的解压工具(如WinRAR或7-Zip)合并解压,才能获得完整的PDF文件。
《数字图像处理——应用篇》是一本涵盖广泛、深度适中的教材,适合计算机视觉、图像处理、模式识别等相关领域的学生和研究人员。
通过学习本书,读者不仅可以掌握基本的图像处理技术,还能了解其在实际应用中的策略和方法,为进入这个领域的深入研究打下坚实基础。
1
MATLAB中AR模型功率谱估计中AR阶次估计的实现-psd_my.rar(最近看了几个关于功率谱的问题,有关AR模型的谱估计,在此分享一下,希望大家不吝指正)(声明:本文内容摘自我的毕业论文——心率变异信号的预处理及功率谱估计)(按:AR模型功率谱估计是对非平稳随机信号功率谱估计的常用方法,但是其模型阶次的估计,除了HOSA工具箱里的arorder函数外,没有现成的函数可用,arorder函数是基于矩阵SVD分解的阶次估计方法,为了比较各种阶次估计方法的区别,下面的函数使用了'FPE','AIC','MDL','CAT'集中准则一并估计,并采用试验方法确定那一个阶次更好。
)………………………………以上省略……………………………………………………………………假设原始数据序列为x,那么n阶参数使用最小二乘估计在MATLAB中实现如下:Y=x;Y(1:n)=[];m=N-n;X=[];%构造系数矩阵fori=1:m  forj=1:n      X(i,j)=xt(ni-j);  endendbeta=inv(X'*X)*X'*Y';复制代码beta即为用最小二乘法估计出的模型参数。
此外,还有估计AR模型参数的Yule-Walker方程法、基于线性预测理论的Burg算法和修正的协方差算法等[26]。
相应的参数估计方法在MATLAB中都有现成的函数,比如aryule、arburg以及arcov等。
4.3.3AR模型阶次的选择及实验设计文献[26]中介绍了五种不同的AR模型定阶准则,分别为矩阵奇异值分解(SingularValueDecomposition,SVD)定阶法、最小预测定误差阶准则(FinalPredictionErrorCriterion,FPE)、AIC定阶准则(Akaika’sInformationtheoreticCriterion,AIC)、MDL定阶准则以及CAT定阶准则。
文献[28]中还介绍了一种BIC定阶准则。
SVD方法是对Yule-Walker方程中的自相关矩阵进行SVD分解来实现的,在MATLAB工具箱中arorder函数就是使用的该算法。
其他五种算法的基本思想都是建立目标函数,阶次估计的标准是使目标函数最小化。
以上定阶准则在MATLAB中也可以方便的实现,下面是本文实现FPE、AIC、MDL、CAT定阶准则的程序(部分):form=1:N-1  ……    %判断是否达到所选定阶准则的要求  ifstrcmp(criterion,'FPE')    objectfun(m1)=(N(m1))/(N-(m1))*E(m1);  elseifstrcmp(criterion,'AIC')    objectfun(m1)=N*log(E(m1))2*(m1);  elseifstrcmp(criterion,'MDL')    objectfun(m1)=N*log(E(m1))(m1)*log(N);  elseifstrcmp(criterion,'CAT')    forindex=1:m1        temp=temp(N-index)/(N*E(index));    end    objectfun(m1)=1/N*temp-(N-(m1))/(N*E(m1));  end    ifobjectfun(m1)>=objectfun(m)    orderpredict=m;    break;  endend复制代码orderpredict变量即为使用相应准则预测的AR模型阶次。
(注:以上代码为结合MATLAB工具箱函数pburg,arburg两个功率谱估计函数增加而得,修改后的pburg等函数会在附件中示意,名为pburgwithcriterion)登录/注册后可看大图程序1.JPG(35.14KB,下载次数:20352)下载附件 保存到相册2009-8-2820:54上传登录/注册后可看大图程序2.JPG(51.78KB,下载次数:15377)下载附件 保存到相册2009-8-2820:54上传下面本文使用3.2.1实验设计的输出结果即20例经预处理的HRV信号序列作为实验对象,分别使用FPE、AIC、MAL和CAT定阶准则预测AR模型阶次,图4.1(见下页)为其中一例典型信号使用不同预测准则其目标函数随阶次的变化情况。
从图中可以看出,使用FPE、AIC以及MDL定阶准则所预测的AR模型阶次大概位于10附近,即阶次10左右会使相应的目标函数最小化,符合定阶准则的要求,使用CAT定阶准则预测的阶次较小,在5~10之间。
图4.2(见下页)为另一例信号的阶次估计情况,从中也可以得到同样的结论。
(注,实验信号为实验室所得,没有上传)登录/注册后可看大图图片1.JPG(28.68KB,下载次数:5674)下载附件 保存到相册2009-8-2820:54上传
2025/6/27 16:08:25 6KB matlab
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡