二、粒子群算法的具体表述上面罗嗦了半天,那些都是科研工作者写论文的语气,不过,PSO的历史就像上面说的那样。
下面通俗的解释PSO算法。
PSO算法就是模拟一群鸟寻找食物的过程,每个鸟就是PSO中的粒子,也就是我们需要求解问题的可能解,这些鸟在寻找食物的过程中,不停改变自己在空中飞行的位置与速度。
大家也可以观察一下,鸟群在寻找食物的过程中,开始鸟群比较分散,逐渐这些鸟就会聚成一群,这个群忽高忽低、忽左忽右,直到最后找到食物。
这个过程我们转化为一个数学问题。
寻找函数y=1-cos(3*x)*exp(-x)的在[0,4]最大值。
-----------------------------------------------------------------标准粒子群算法的实现思想基本按照粒子群算法(2)----标准的粒子群算法的讲述实现。
主要分为3个函数。
第一个函数为粒子群初始化函数InitSwarm(SwarmSize......AdaptFunc)其主要作用是初始化粒子群的粒子,并设定粒子的速度、位置在一定的范围内。
本函数所采用的数据结构如下所示:表ParSwarm记录的是粒子的位置、速度与当前的适应度值,我们用W来表示位置,用V来代表速度,用F来代表当前的适应度值。
在这里我们假设粒子个数为N,每个粒子的维数为D。
---------------------------------------------------------------------
2023/2/17 13:39:22 493KB 粒子群 局部版本 多目标 matlab
1
T2F函数,在matlab中做傅里叶变换时调用,工夫域信号转化为频率域
2023/2/14 13:56:49 136B matlab 傅里叶变换
1
语音及图像、视频信号的采集方法,在matlab环境下的输出,输出及保存方法。
Guide界面基本操作,Guide的M文件及回调函数的使用,Guide创建GUI的步骤及常用控件,实现语音信号的采集;
实现语音信号的显示与保存实现语音信号的快放、慢放功能,加噪、去噪功能。
利用Guide建立一个matlabGUI软件,实现多种图像格式的读取、显示。
利用GUI,实现多种图像格式的读取、保存、变换等操作;
实现多种图像边缘提取、结果保存等运算;
利用变换域方法进行声音、图像数据的分析,视频文件在GUI中播放,静止图像转化为视频文件。
2023/2/14 1:30:33 2.56MB MATLAB GUI 图片 视频
1
针对传统摄像机自标定方法的上述不足,利用遗传算法完成了Hartley新的Kruppa方程的摄像机自标定过程,以便将这个过程完全转化为通过代价函数最小化来求得摄像机的内参数,这就排除了极点的不稳定因素。
实验结果表明,该方法是简单、无效的,可以作为一种通用的标定工具
2023/2/12 14:51:01 135KB 自标定 Kruppa方程 基础矩阵
1
这是将彩色图像转化为bayer图像的MATLAB程序,进展对大家有用
2023/2/11 11:10:28 1KB bayer 彩色图像 MATLAB
1
文本挖掘tmSVM开源项目集成libSVM和liblinear包含Python和Java两种版本带PDF源码参考文档简介文本挖掘无论在学术界还是在工业界都有很广泛的应用场景。
而文本分类是文本挖掘中一个非常重要的手段与技术。
现有的分类技术都已经非常成熟,SVM、KNN、DecisionTree、AN、NB在不同的应用中都展示出较好的效果,前人也在将这些分类算法应用于文本分类中做出许多出色的工作。
但在实际的商业应用中,仍然有很多问题没有很好的解决,比如文本分类中的高维性和稀疏性、类别的不平衡、小样本的训练、Unlabeled样本的有效利用、如何选择最佳的训练样本等。
这些问题都将导致curveofdimension、过拟合等问题。
这个开源系统的目的是集众人智慧,将文本挖掘、文本分类前沿领域效果非常好的算法实现并有效组织,形成一条完整系统将文本挖掘尤其是文本分类的过程自动化。
该系统提供了Python和Java两种版本。
主要特征该系统在封装libsvm、liblinear的基础上,又增加了特征选择、LSA特征抽取、SVM模型参数选择、libsvm格式转化模块以及一些实用的工具。
其主要特征如下:封装并完全兼容*libsvm、liblinear。
基于Chi*的featureselection见feature_selection基于LatentSemanticAnalysis的featureextraction见feature_extraction支持Binary,Tf,log(tf),Tf*Idf,tf*rf,tf*chi等多种特征权重见feature_weight文本特征向量的归一化见Normalization利用交叉验证对SVM模型参数自动选择。
见SVM_model_selection支持macro-average、micro-average、F-measure、Recall、Precision、Accuracy等多种评价指标见evaluation_measure支持多个SVM模型同时进行模型预测采用python的csc_matrix支持存储大稀疏矩阵。
引入第三方分词工具自动进行分词将文本直接转化为libsvm、liblinear所支持的格式。
使用该系统可以做什么对文本自动做SVM模型的训练。
包括Libsvm、Liblinear包的选择,分词,词典生成,特征选择,SVM参数的选优,SVM模型的训练等都可以一步完成。
利用生成的模型对未知文本做预测。
并返回预测的标签以及该类的隶属度分数。
可自动识别libsvm和liblinear的模型。
自动分析预测结果,评判模型效果。
计算预测结果的F值、召回率、准确率、Macro,Micro等指标,并会计算特定阈值、以及指定区间所有阈值下的相应指标。
分词。
对文本利用mmseg算法对文本进行分词。
特征选择。
对文本进行特征选择,选择最具代表性的词。
SVM参数的选择。
利用交叉验证方法对SVM模型的参数进行识别,可以指定搜索范围,大于大数据,会自动选择子集做粗粒度的搜索,然后再用全量数据做细粒度的搜索,直到找到最优的参数。
对libsvm会选择c,g(gamma),对与liblinear会选择c。
对文本直接生成libsvm、liblinear的输入格式。
libsvm、liblinear以及其他诸如weka等数据挖掘软件都要求数据是具有向量格式,使用该系统可以生成这种格式:labelindex:valueSVM模型训练。
利用libsvm、liblinear对模型进行训练。
利用LSA对进行FeatureExtraction*,从而提高分类效果。
开始使用QuickStart里面提供了方便的使用指导如何使用该系统可以在命令行(Linux或cmd中)中直接使用,也可以在程序通过直接调用源程序使用。
在程序中使用。
#将TMSVM系统的路径加入到Python搜索路径中importsyssys.path.insert(0,yourPath+"\tmsvm\src")importtms#对data文件夹下的binary_seged.train文件进行训练。
tms.tms_train(“../data/binary_seged.train”)#利用已经训练好的模型,对对data文件夹下的binary_seged.test文件预测tms.tms_predict(“../data/binary_seged.test”,”../model/tms.config”)#对预测的结果进行分析,评判模型的效果tms.tms_analysis(“../tms.result”)在命令行中调用#对data文件夹下的binary_seged.train文件进行训练。
$pythonauto_train.py[options]../data/binary_seged.train#利用已经训练好的模型,对对data文件夹下的binary_seged.test文件预测pythonpredict.py../data/binary_seged.train../model/tms.config#对预测的结果进行分析,评判模型的效果$pythonresult_anlaysis.py../tms.result上面的调用方式都是使用系统中默认的参数,更具体、灵活的参数见程序调用接口输入格式labelvalue1[value2]其中label是定义的类标签,如果是binaryclassification,建议positive样本为1,negative样本为-1。
如果为multi-classification。
label可以是任意的整数。
其中value为文本内容。
label和value以及value1和value2之间需要用特殊字符进行分割,如”\t”模型输出模型结果会放在指定保存路径下的“model”文件夹中,里面有3个文件,默认情况下为dic.key、tms.model和tms.config。
其中dic.key为特征选择后的词典;
tms.model为训练好的SVM分类模型;tms.config为模型的配置文件,里面记录了模型训练时使用的参数。
临时文件会放在“temp”文件夹中。
里面有两个文件:tms.param和tms.train。
其中tms.param为SVM模型参数选择时所实验的参数。
tms.train是供libsvm和liblinear训练器所使用的输入格式。
源程序说明src:即该系统的源代码,提供了5个可以在Linux下可以直接调用的程序:auto_train.py、train.py、predict.py为在Linux下通过命令行调用的接口。
tms.py为在程序中调用的主文件,直接通过importtms即可调用系统的所有函数。
其他文件为程序中实现各个功能的文件。
lsa_src:LSA模型的源程序。
dependence:系统所依赖的一些包。
包括libsvm、liblinear、Pymmseg在Linux32位和64位以及windows下的支持包(dll,so文件)。
tools:提供的一些有用的工具,包括result_analysis.py等。
java:java版本的模型预测程序,项目重要更新日志2012/09/21针对linux下的bug进行修正。
重新生成win和linux版本的。
2012/03/08增加stem模块,并修正了几个Bug。
2011/11/22tmsvm正式发布。
联系方式邮箱:zhzhl202@163.comThanks本系统引用了libsvm、liblinear的包,非常感谢Chih-JenLin写出这么优秀的软件。
本系统还引用了Pymmseg,非常感谢pluskid能为mmseg写出Python下可以直接使用的程序从最初的想法萌生到第一版上线,中间试验了很多算法,最终因为效果不好删掉了很多代码,在这期间得到了许多人的帮助,非常感谢杨铮、江洋、敏知、施平等人的悉心指导。
特别感谢丽红一直以来的默默支持。
2023/2/8 18:37:14 3.39MB 文本挖掘 tmSVM libSVM 支持向量机
1
该工具利用“火星坐标系”转WGS1984坐标系算法密钥,进行“火星坐标系”转换为真实的WGS1984坐标系,可以精确将从googlemap中的数据转化为真实的数据。
该工具运转环境是AE10.0,可以针对简单的点、线、面shp数据进行转化。
2023/2/6 1:31:30 168KB 火星坐标系 WGS1984 坐标转换 偏移
1
比较好玩的blender3D模型,大家如果有需求的话可以下载出来看看,而且可以转化问其他3D文件类型,可以通过houdini,3dmax,maya等软件都可以打开。
2023/1/30 10:54:36 3.59MB 模板文件类型
1
由于最近的mybatis项目中经常需要新增表字段,而表字段为下划线风格,javabean字段为驼峰风格,而eclipse没有自带下划线风格和驼峰风格互转的快捷键,因而做了这个eclipse插件来实现添加该功能,我想应该有很多人也为eclipse没有自带这种快捷键而苦恼过,因而发布该资源,下载后就是一个jar文件,粘贴到eclipse的plugins文件夹重启eclipse后,选中eclipse编辑器中的一段内容例如ab_cd_ef按快捷键ctrl+shift+z则会转化为abCdEf,再按一下快捷键转化回ab_cd_ef,默认驼峰转为下划线后为全小写,因为另一个自带的转大写快捷键ctrl+shift+x就在该插件的快捷键旁边,如果需要转大写可以很方便用自带快捷键实现
1
O2S.Components.PDFRender4NET.dll真正无水印最新版v4.5.1,曾经测试过,完全可用,能够将pdf转化为图片的强大类库。
2023/1/28 18:34:51 944KB PDF2image
1
共 518 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡