本设计的目的是通过编写和调试一个系统动态分配资源的简单模拟程序,观察死锁产生的条件,并采用适当的算法,有效地防止和避免死锁地发生。
2024/9/8 5:20:06 118KB 银行家算法
1
这段代码是帮同事写的,解决穷举数组中的所有可能的排列结果,然后通过改结果暴力破解密码,产生一个系统的密码库。
数组就是通常意义上的密码字典,可以适当扩展自由定义
2024/9/7 14:14:25 2KB 排列 穷举 组合 遍历
1
水纹波动效果仿格式工厂logo广告c/c++源代码VC6.0工程打包
1
在matlab环境下综合m文件和仿真库simulink实现伪随机m序列的产生,也可进行扩展。
2024/9/5 2:12:06 7KB m序列生成器
1
该程序可以在窗口里用鼠标随意点击来产生不同的“城市”,最短距离也是直观的连线表示,简单易用。
热心提醒:模拟退火法在该程序中没有单一的退火方向,等同于随机遍历,你可以自己想办法设置退火方向,我还没想出来怎么办╮(╯▽╰)╭
2024/9/4 20:05:48 110KB 遗传算法 模拟退火 旅行商问题 c#
1
(1)实现的磁盘调度算法有FCFS,SSTF,SCAN,CSCAN和NStepSCAN算法。
(2)设定开始磁道号寻道范围,依据起始扫描磁道号和最大磁道号数,随机产生要进行寻道的磁道号序列。
(3)选择磁盘调度算法,显示该算法的磁道访问顺序,计算出移动的磁道总数和平均寻道总数。
2024/9/4 7:16:34 6KB 操作系统、 磁盘调度
1
保险行业是典型的文档、单证密集型行业,从客户投保填写投保单,到承保后的保单、发票、批单、信函等等,在业务办理中会产生大量的纸质单据、凭证,交付客户的同时也需要公司内部留档保存,需要消耗大量纸张,另外纸质单证的存档、调阅、管理等需要花费很多人力和物力。
更重要的是,纸质单证带来的线下流程将影响业务时效性、制约客户服务质量的提升。
实现纸质单证电子化、无纸化不仅可解决前述问题,也完全符合近年来国家一直提倡的绿色金融理念,能在社会上形成良好的正向反馈,有力推动绿色金融的发展
2024/9/3 9:56:22 989KB DAPP
1
IIC总线VerilogFGPA模块实现注释详尽初学必备,实现了IIC读写EEPROM,已封装成模块,实例中为了testbench测试,将写入的数据变成了固定值,注释详尽,初学者也能明白,本人初学时编写,完整测试通过/****clk50M :50M输入时钟*resetKey :复位信号*IIC_SDA :IIC数据接口*IIC_SCL :IIC控制时钟接口*RWSignal :读写信号,读1,写0*startSignal :开始执行读命令信号,上升沿触发开始*readLen :需要读取的字节个数*beginAddr :开始读取的地址位置*getNum :当前对应地址获取到的字节值*sendNum :要写入的数据*dpDataOkClk :成功读处理完一个字节信息,读或写,将产生一个上升沿*///`MINCLK_DELAY产生一次计数,产生12次计数可以产生一次IIC_SCL信号的跳变//50M/2/2/MINCLK_DELAY/12=IIC_CLK`defineMINCLK_DELAY 4'd5`defineEEPROM_ADDR 7'b1010000`defineSDA_SENDDATA 1'b1`defineSDA_GETDATA 1'b0`defineREADE_DATASG 1'b1`defineWRITE_DATASG 1'b0moduleIICTest0(clk50M,resetKey,IIC_SDA,RWSignal,startSignal,beginAddr,IIC_SCL,sendNum,getNum,dpDataOkClk);
1
最新YourKitJavaProfiler2019.01最新破解版build111绿色安装。
欢迎大家试用。
免责声明:这只是供个人开发爱好者使用,如用于商业或公司目的,请购买正版,否则由此产生的后果,本人概不负责。
毕竟这只是业余爱好,供大家玩玩而已。
谢谢。
2024/9/2 4:06:24 47.1MB YourKit Java Profiler 2019
1
《ANSYS_LS_DYNA模拟鸟撞飞机风挡的动态响应》鸟撞问题在飞机设计中至关重要,尤其是在飞机起飞和降落时,高速运动的飞机与鸟类相撞可能导致严重损伤,甚至造成机毁人亡的灾难。
特别是飞机的前风挡部分,由于迎风面积大,成为鸟撞概率较高的区域,而风挡玻璃的强度相对较低,因此对风挡受鸟撞冲击的模拟分析显得尤为必要,以提升飞行安全性。
早期的抗鸟撞设计主要依赖实验方法,但随着计算机技术和有限元数值计算理论的发展,现在越来越多地采用数值计算来分析鸟撞问题。
目前的有限元模型主要分为解耦解法和耦合解法。
解耦解法将鸟撞冲击力作为已知条件,单独求解风挡的动态响应,但鸟撞载荷模型的不确定性会影响求解精度。
耦合解法则考虑碰撞接触,通过协调鸟体与风挡接触部位的条件,联合求解,能更直观地模拟整个鸟撞过程。
本文采用ANSYS_LS_DYNA软件,建立鸟撞风挡的三维模型,研究鸟撞风挡的动态响应特征。
在建立有限元模型时,使用ANSYS软件,简化了计算过程,忽略了对风挡动态响应影响不大的结构因素,如机身、后弧框和铆钉等,将其替换为边界固定。
风挡结构为圆弧形,材料为特定型号的国产航空玻璃,鸟撞击点设在风挡中部,撞击角度为29°。
选用LS-DYNA材料库中的塑性动力学材料模型,破坏准则设定为最大塑性应变失效模式,当材料塑性应变达到5%时材料破坏。
鸟体的模拟是鸟撞分析的一大挑战,由于真实鸟体的本构特性难以准确描述,通常采取弹性体、弹塑性体或理想流体等简化模型。
本文中,鸟体被简化为质量1.8kg、直径14cm的圆柱体,材料选用弹性流体模型。
计算结果显示,当鸟撞速度达到540km/h(相对于风挡的绝对速度)时,风挡的后弧框处有效塑性应变达到5%,风挡破坏。
据此,计算得出风挡的安全临界速度为150m/s。
在这一速度下,风挡后弧框处首先发生破坏,成为结构弱点。
撞击时的最大应力主要集中在后弧框及其下方,而非撞击点。
此外,鸟撞还会导致风挡结构产生位移。
风挡下方通常布置有精密仪器,因此必须考虑鸟撞引起的位移情况。
鸟体撞击后在风挡上滑行,挤压风挡表面,产生较大位移。
计算表明,在150m/s的撞击速度下,最大位移可达38mm,位于撞击点和后弧框之间。
风挡表面位移随着时间呈现出先向下位移,然后因弯曲波反弹而振荡的行为。
总结来说,鸟撞风挡的最危险区域位于后弧框及其下方。
不同结构的风挡有不同的鸟撞安全临界速度、最大位移和撞击时间。
对于本文的风挡模型,临界速度为450km/h,最大位移为38mm,撞击时间约为7ms。
这些分析结果对于飞机设计改进和飞行安全性的提升具有重要指导意义。
2024/9/1 16:57:18 218KB dyna
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡