文件中给出案例数据,列代表指标集(输入集x:1-7,输出集y:8)行代表数据集。
可以用于本科毕业论文或者硕士毕业论文,首先使用SPSS进行出成分分析,然后将主成分得分值作为输入集,输出集保持不变。
通过该算法文件就可以得到预测值,具体步骤可以参考《基于SVM和LS-SVM的住宅工程造价预测研究》。
本算法使用BP神经网络的误差函数作为GWO算法的适应度函数,通过BP神经网络连接权值和阈值的数量来决定GWO算法中灰狼的维数,那么GWO算法寻优的过程就是权值和阈值更新的过程。
因而,GWO算法寻优的过程替代了BP神经网络梯度下降的过程。
经过不断更新和迭代,最终确定出全局最优值,即灰狼α所处的位置。
本算法输出的权值和阈值即作为神经网络的权值和阈值,不在通过神经网络继续训练。
可以参考文献《基于粒子群优化算法的BP网络学习研究》。
2019/11/18 17:14:58 13KB 灰狼算法 神经网络
1
针对BP神经网络训练过程易陷入局部极值导致训练误差收敛速度慢的问题,提出将具有全局寻优的萤火虫算法,结合BP算法共同训练神经网络。
在本质上,萤火虫BP神经网络利用萤火虫算法对神经网络进行早期训练,避开局部极值点,得到优化后的神经网络初始权值后,利用BP算法的局部寻优特性对网络做进一步精细训练。
轴承毛病实验表明,萤火虫BP神经网络的训练误差收敛速度相比BP神经网络、萤火虫神经网络显著提升,毛病识别率最高达到99.47%。
1
BP神经网络的仿真,能够拟合各种函数,支持梯度下降法和LM两种训练算法。
所有代码本人编写,没有使用matlab自带的函数,是学习的最佳范本。
1
实现了工程测量中各种常见的沉降预测算法,包括直线拟合法、二次多项式拟合法、三次多项式拟合法、双曲线法、对数曲线法、抛物线法、指数曲线法、泊松曲线法、星野法、Asaoka法、灰度模型GM(1,1)法、灰度模型Verhulst法、BP神经网络法、遗传算法。
各种算法的具体实现可以参考https://blog.csdn.net/yh523/article/details/122944048。
在VisualStudio2015中采用C#编程语言实现,使用.NetFramework4.0。
附件资源包含可以编译运转的源代码,以及可以直接运转的exe示例程序。
1
008_基于遗传算法优化BP神经网络(GA-BP)的数据分类预测Matlab代码完成过程
1
利用BP神经网络设计指纹识别算法,给神经网络提供每一模式类中的一些样本作为训练样本。
BP网络经过学习,不只能够识别已训练过的样本,而且能够识别未出现过的样本。
利用神经网络的泛化能力,提高指纹识别算法的识别率,图像增强、提取指纹特征
2015/4/18 22:20:06 16KB 指纹识别算法 BP神经网络
1
007_基于遗传算法优化BP神经网络(GA-BP)的数据回归预测Matlab代码完成过程
2017/3/27 15:39:04 23KB Matlab 神经网络 机器学习 深度学习
1
GA优化BP神经网络权值和阈值,克服BP神经网络易于陷入局部最小值等问题。
不仅可以自动搜索神经网络最佳隐藏层神经元数量,还可以固定经GA优化后的权值和阈值使得网络多次运行最终结果不变。
1
该课题为基于bp神经网络的中文汉字识别零碎,可以用手写板写,现场识别。
有界面GUI操作。
另外可识别汉字,字母,数字等均可。
1
针对自主吸尘机器人非结构化的工作环境及避障的实时性要求,提出融合了超声波传感器和红外传感器的混合视觉算法,并且基于BP神经网络的传感器信息融合技术进行了实验。
1
共 344 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡