跟单软件就是通过账户关联到一起,其中一个账户有人操作时,另一个账户就自动跟着操作。
可以设置跟单大小手数和跟单方向,过滤等功能  1.支持多平台交易:完美支持CTP、金牛、鑫管家、融航、金仕达、假盘平台,自由切换,随意对冲2.单倍数:设置跟单的倍数关系,调整杠杆。
可填小数(按照乘积的向下去整如15*0.3=4)或整数.3.跟单方向:分为正向反向;
正向:和样本账户买卖相同,反向则相反  报单延迟:可以调节样本成交后下单的时间延迟,单位是秒建议为04.​撤单时间:如果本账户下单不成交设置N秒撤单,当后面的选中时则撤单后自动按照最新对价马上下单,未选中时为暂停追单。
5.一键撤单:撤掉软件打开后本帐号所有未成交单  6.强制清除挂单:撤掉本帐号所有未成交委托单7.​系统日志:显示必要的成交等提示信息 8.一键同步:两个账户一键持仓同步,显示双账号持仓信息。
长期以来期货市场的现象和数据充分证明了市场上的规律,有了这套系统稳定盈利不再是梦想,可以提供软件试用
2023/7/4 22:35:08 4.48MB 外盘跟单软件
1
陈希孺院士的经典书籍。
《广义线性模型的拟似然法(陈希孺文集)》是一本广义线性模型理论的入门用书,内容除了广义线性模型的建模方法外,主要是关于广义线性模型的几种基本统计推断形式(极大似然估计、假设检验和拟似然估计)的大样本理论,最后一章讲述了广义线性模型的模型选择和诊断。
引言1第1章建模问题51.1一维广义线性回归61.2多维广义线性回归18第2章广义线性回归极大似然估计的大样本理论432.1向量函数导数442.2自然联系492.3非自然联系752.4拟似然估计100第3章GLM参数的假设检验1313.1Wald检验1323.2约束检验1353.3似然比检验139第4章模型的选择与诊断1434.1p值或拟合优度1444.2模型选择1524.3诊断问题
2023/6/29 1:35:35 5.55MB 数理统计 陈希孺
1
关于贝叶斯算法及历史的介绍。
【贝叶斯公式】  设D1,D2,……,Dn为样本空间S的一个划分,如果以P(Di)表示事件Di发生的概率,且P(Di)>0(i=1,2,…,n)。
对于任一事件x,P(x)>0,则有:  n  P(Dj/x)=p(x/Dj)P(Dj)/∑P(X/Di)P(Di)  i=1
2023/6/15 15:40:42 177KB 贝叶斯 算法
1
DataCastle轴承故障预测数据集,可供下载使用的有2个文件:1.train.csv,训练集数据,1到6000为按时间序列连续采样的振动信号数值,每行数据是一个样本,共792条数据,第一列id字段为样本编号,最后一列label字段为标签数据,即轴承的工作状态,用数字0到9表示。
2.test_data.csv,测试集数据,共528条数据,除无label字段外,其他字段同训练集。
总的来说,每行数据除去id和label后是轴承一段时间的振动信号数据,选手需要用这些振动信号去判定轴承的工作状态label。
2023/6/15 11:38:32 21.87MB 数据集
1
1主题内容与适用范围1.1主题内容软件单元测试是一个过程。
本标准为该过程规定了一个标准的方法,使之成为软件工程实践中的基础。
该方法是一种综合的方法,目的是对软件单元进行系统化的测试,包括测试计划的执行、测试集的获取以及测试单元与其需求的对照衡量包括使用样本数据来执行被测试单元、并将该单元的实际结果与单元的需求文件中指定的结果进行比较。
本标准描述了一个测试过程,它由一系列具有层次结构的阶段、活动及任务组成,且为每一活动定义了一个最小任务集。
1.2适用范围本规范可适用于任何计算机软件的单元测试(包括新开发的或修改过的软件单元)。
本标准并不规定这些软件的类型,也不规定哪些软件必须进行单元测试。
本标准
2023/6/14 17:04:03 180KB 计算机软件单元测试
1
行人检测训练库,负样本12000,正样本2400.
2023/6/13 4:22:55 39.65MB 行人检测训练
1
PCL版本为1.6.0allinoneIDE为VS2010本demo实现了mls的用法,压缩包里有点云样本,成功实现了点云的Upsampling。
2023/6/11 22:30:05 151KB c++ PCL MLS 三维重建
1
一、引言自适应噪声抵消技术是一种能够很好的消除背景噪声影响的信号处理技术,应用自适应噪声抵消技术,可在未知外界干扰源特征,传递途径不断变化,背景噪声和被测对象声波相似的情况下,能够有效地消除外界声源的干扰获得高信噪比的对象信号。
从理论上讲,自适应干扰抵消器是基于自适应滤波原理的一种扩展,简单的说,把自适应滤波器的期望信号输入端改为信号加噪声干扰的原始输入端,而它的输入端改为噪声干扰端,由横向滤波器的参数调节输出以将原始输入中的噪声干扰抵消掉,这时误差输出就是有用信号了。
在数字信号采集、处理中,线性滤波是最常用的消除噪声的方法。
线性滤波容易分析,使用均方差最小准则的线性滤波器能找到闭合解,若噪声干扰类型为高斯噪声时,可达到最佳的线性滤波效果。
计算机论文www.lunwendingzhi.com;
机械毕业论文www.lunwenwanjia.com在实际的数字信号采集中,叠加于信号的噪声干扰往往不是单一的高斯噪声,而线性滤波器所要求的中等程度噪声偏移,使线性滤波器对非高斯噪声的滤波性能下降,为克服线性滤波器的缺点,往往采用非线性滤波器,所以本文采用神经网络对信号进行滤波处理。
二、基于BP算法和遗传算法相结合的自适应噪声抵消器在本文中,作者主要基于自适应噪声对消的原理对自适应算法进行研究,提出了一种新的算法,即BP算法和遗传算法相结合的自适应算法。
作者对BP网络的结构及算法作了一个系统的综述,分析了BP算法存在的主要缺陷及其产生的原因。
传统的BP网络既然是一个非线性优化问题,这就不可避免地存在局部极小问题,网络的极值通过沿局部改善的方向一小步进行修正,力图达到使误差函数最小化的全局解,但实际上常得到的使局部最优点。
管理毕业论文网www.yifanglunwen.com;
音乐毕业论文www.xyclww.com;
英语毕业论文www.lanrenbanjia.com;
学习过程中,下降慢,学习速度缓,易出现一个长时间的误差平坦区,即出现平台。
通过对遗传算法文献的分析、概括和总结,发现遗传算法与其它的搜索方法相比,遗传算法(GA)的优点在于:不需要目标函数的微分值;
并行搜索,搜索效率高;
搜索遍及整个搜索空间,容易得到全局最优解。
所以用GA优化BP神经网络,可使神经网络具有进化、自适应的能力。
BP-GA混合算法的方法出发点为:经济论文www.youzhiessay.com教育论文www.hudonglunwen.com;
医学论文网www.kuailelunwen.com;
(1)利用BP神经网络映射设计变量和目标函数、约束之间的关系;
(2)用遗传算法作实现优化搜索;
(3)遗传算法中适应度的计算采用神经网络计算来实现。
BP-GA混合算法的设计步骤如下:(1)分析问题,提出目标函数、设计变量和约束条件;
(2)设定适当的训练样本集,计算训练样本集;
(3)训练神经网络;
(4)采用遗传算法进行结构寻优;
(5)利用训练好的神经网络检验遗传算法优化结果。
若满足要求,计算结束;
若误差不满足要求,将检验解加入到训练样本集中,重复执行3~5步直到满足要求。
通过用短时傅立叶信号和余弦信号进行噪声对消性能测试,在单一的BP算法中,网络的训练次数、学习速度、网络层数以及每层神经元的节点数都是影响BP网络的重要参数,通过仿真实验可以发现,适当的训练次数可以使误差达到极小值,但是训练次数过多,训练时间太长,甚至容易陷入死循环,或者学习精度不高。
学习速度不能选择的太大,否则会出现算法不收敛,也不能选择太小,会使训练过程时间太长,一般选择为0.01~0.1之间的值,再根据训练过程中梯度变化和均方误差变化值确定。
基于梯度下降原理的BP算法,在解空间仅进行单点搜索,极易收敛于局部极小,而GA的众多个体同时搜索解空间的许多点,因而可以有效的防止搜索过程收敛于局部极小,只有算法的参数及遗传算子的操作选择得当,算法具有极大的把握收敛于全局最优解。
使用遗传算法需要决定的运行参数中种群大小表示种群中所含个体的数量,种群较小时,可提高遗传算法的运算速度,但却降低了群体的多样性,可能找不出最优解;
种群较大时,又会增加计算量,使遗传算法的运行效率降低。
一般取种群数目为20~100;
交叉率控制着交叉操作的频率,由于交叉操作是遗传算法中产生新个体的主要方法,所以交叉率通常应取较大值,但若过大的话,又可能破坏群体的优良模式,一般取0.4~0.99;
变异率也是影响新个体产生的一个因素,变异率小,产生个体少,变异率太大,又会使遗传算法变成随机搜索,一般取变异率为0.0001~0.1。
由仿真结果得知,GA与BP算法的混合算法不论是在运行速度还是在运算精度上都较单纯的BP算法有提高,去噪效果更加明显,在信噪比的改善程度上,混合算法的信噪
2023/6/7 6:07:05 2KB BP算法 遗传算法 matlab 源码
1
在做深度学习时,如果样本量不够,可以采取对图片做随机裁剪,翻转等一系列调整,增加样本量。
这个程序可以实现对文件夹中的图片做批处理,你要做的只是修改路径。
2023/6/6 15:36:54 2KB Python 图像处理
1
该数据集共3个类别,178个样本,每个样本13个特征,还不够50字节的吗?
2023/6/5 17:15:47 6KB 数据集
1
共 560 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡