icm20948硬件DMP库,原厂资料,iar工程,完整滤波算法,误差校正,精度很高,亲测可用,同时包含上位机软件
2023/9/19 21:55:01 22.59MB iCM20948 dmp库 stm32f4
1
本文介绍了语音存储与回放系统的总体设计方案,系统要实现的功能,然后通过分析比较选择最佳设计方案,并完成整个系统电路的设计。
本文利用单片机AT89C52控制ISD4004语音芯片来实现语音的录制和播放ISD4004语音芯片无须A/D转换和压缩就可以直接储存,没有转换误差。
具有可多次重复录放、存储20秒的功能.使用时不需扩充存储器,所需外围电路简单。
本文在简单分析ISD4004单片语音芯片工作原理的基础上,通过系统功能模块各部分的连接及软硬件设计,实现了数字化语音的存储和回放.通过外部设备的扩展,可以提高产品的应用领域。
2023/9/19 6:01:10 4MB 语音录放
1
工业生产中温度控制具有单向性、时滞性、大惯性和时变性的特征,要实现温度控制的快速性和准确性,对于提高产品质量具有很重要的现实意义。
本课题针对温度控制的特点及实现准确温度控制的意义,设计了一种基于PID的恒温控制系统。
设计内容包括硬件和软件两个部分。
硬件电路以AT89S52单片机为微处理器,详细设计了为单片机提供电的电源电路,温度信号采样电路,键盘及显示电路,加温控制电路等四大电路模块。
软件部分主要对PID算法进行了数学建模和编程。
PID参数整定采用的是归一参数整定法。
本设计由键盘电路输入设定温度信号给单片机,温度信号采集电路采集现场温度信号给单片机,单片机根据输入与反馈信号的偏差进行PID计算,输出控制信号给加温控制电路,实现加温和停止。
显示电路实现现场温度的实时监控。
本系统PID参数整定在MATLAB软件下SIMULINK环境中进行了仿真,通过稳定边界法整定得到、、参数,最终系统无稳态误差,调节时间为30s,无超调量,各项指标均满足设计要求。
本系统实现简单,硬件要求不高,且能对温度进行时实显示,具有控制过程的特殊性,本设计提出了一种基于PID算法来实现恒温控制的温度控制系统,主要是为了达到生产过程中对温度控制速度快,准确性高等特点。
1
快速傅里叶变换是应用最广泛的一种谐波检测方法,但直接利用快速傅里叶变换进行谐波检测存在较大的误差,影响谐波分析结果的准确性。
通过加汉宁窗及插值修正算法可以改善计算谐波频率、相位和幅值的准确度。
简述了电力系统谐波检测非同步采样加汉宁窗插值算法的原理,并采用巴特沃斯低通滤波器滤除高频噪声。
MATLAB仿真结果表明,加汉宁窗插值算法具有检测精度好,实现简单的优点。
2023/9/16 7:19:57 3KB 谐波检测 加汉宁窗插值
1
自己写的基于STM32F407单片机的超声波测距程序,超声波模块是HC_SR04,通过实际测量,在测量15cm的时候,误差在2cm左右,测量20cm的时候,误差在1厘米左右,最远测量距离不超过4m,超过后定时器溢出,测得的数据就不准了,而这个模块精准测量范围也在4m左右,通过一个LED灯作为判断的依据。
2023/9/15 13:46:05 4.06MB STM32F407 超声波测距
1
Camshift是一种应用颜色信息的跟踪算法,它对做加速度的运动物体跟踪效果不够稳定和强壮,从准确预测目标位置及缩小目标搜索范围入手对算法进行了改进该算法使用运动目标加速度运动位移方程预测下一时刻目标可能出现的位置,使用预测位置误差方程估计运动目标搜索范围,并使用HR滤波器对目标运动速度加速度等参数自适应地修正实验证明,改进的Camshift有效地克服了Camshift算法自身的缺陷,即使运动目标做加速运动时,也可准确地预测运动目标的位置,缩小目标搜索范围,进而提高目标跟踪速度
2023/9/12 20:41:14 246KB 目标跟踪 Camshift算法 位置预测
1
很多升压芯片及厂家等的详细资料!PT1301是一款最低启动电压可低于1V的小尺寸高效率升压DC/DC转换器,采用自适应电流模式PWM控制环路。
PT1301内部包含误差放大器、斜坡产生器、比较器、功率开关和驱动器。
PT1301能在较宽的负载电流范围内稳定和高效的工作,并且不需要任何外部补偿电路。
PT1301的启动电压可低于1V,因此可满足单节干电池的应用。
PT1301内部含有2A功率开关,在锂电池供电时最大输出电流可达300mA,同时PT1301还提供用于驱动外部功率器件(NMOS或NPN)的驱动端口,以便在应用需要更大负载电流时,扩展输出电流。
500KHz的开关频率可缩小外部元件的尺寸。
输出电压由两个外部电阻设定。
14μA的低静态电流,再加上高效率,可使电池使用更长时间。
2023/9/12 15:41:06 8.99MB 升压芯片
1
为了实现对中短距离的测量,比如在智能小车避障、车辆定位中对前方的障碍物进行判断,利用主控器件单片机和一系列外围器件进行超声波测距系统的设计。
具体设计包括超声波发射电路、超声波接收电路、液晶显示电路及温度补偿电路等硬件模块,并利用KeilC平台进行了相应的软件设计。
其中在接收电路中设计的增益控制部分有效地解决了当回波信号过于微弱时系统测量误差加大的难题。
在实验室对设计好的测距系统进行了实地性能测试,实验表明,系统的测距最大值为120cm,测量精度为0.1cm。
1
一本好书,研究dds数字频率合成必读!内容简介《直接数字频率合成》共6章,比较全面、深入地讨论了DDS的理论与应用。
主要内容包括DDS的基本概念、相位累加器、正弦查表、D/A变换器的噪声分析;
拟周期脉冲删除;
级数展开、连分式展开;
DDS相位噪声和杂散产生的机理及其降低;
DDS与PLL的组合;
分数-N频率合成器原理;
低噪声微波频率合成器的设计原理;
新的DDS结构等。
《直接数字频率合成》的特点是:内容新,反映了现在的研究和发展水平;
抓住问题的主要方面,把理论与应用结合在一起;
可供无线电通信领域中的研究者和工程技术人员学习参考,也可作为工作在其他领域中的有关人员学习参考。
3目录序言第1章直接数字频率合成原理1.1DDS的基本概念1.2相位累加器1.3正弦查表1.4D/A变换器1.4.1数字编码1.4.2输出波形1.5具有调制能力的DDS系统1.6逼近频率合成第2章DDS中的相位和杂散噪声2.1引言2.2矩形波输出2.2.1拟周期脉冲删除2.2.2基于修正的恩格尔级数展开的系统2.2.3基于连分式展开的系统2.2.4基于展开组合的系统2.2.5杂散信号2.3正弦波输出2.3.1量化输出正弦波的傅里叶分析2.3.2相位截断正弦波的频谱分析2.3.3正弦字的截断2.3.4背景杂散信号电平的估计2.3.5W和S之间的关系2.4D/A变换器的噪声分析2.4.1量化引起的信噪比2.4.2D/A变换器引起的非线性杂散信号2.4.3突发性尖脉冲2.5脉冲速率频率合成器的频谱第3章DDS中相位噪声和杂散信号的降低3.1DDS的噪声特性3.1.1不同电路的噪声特性3.1.2DDS的相位噪声3.2DDS中接近载波的噪声3.2.1DDS输出噪声的计算3.2.2接近载波噪声的理论基础3.2.3杂散频谱的估计3.2.4实验结果及讨论3.3输出滤波器3.4改进DDS电路的设计3.4.1降低ROM的容量3.4.2降低突发性尖脉冲的方法3.5DDS频谱性能的改进3.6DDS与PLL的组合3.6.1DDS与PLL组合合成器3.6.2十进制DDS的设计第4章分数-N频率合成器原理4.1FNPLL环路4.1.1FNPLL环路的组成4.1.2FNPLL环路的工作原理4.2FNPLL环路简化频率合成4.3使用FNPLL环路的频率合成器4.4DDS控制吞脉冲分数-N频率合成原理4.5DDS控制吞脉冲分数-N环路的杂散相位调制4.6双模式分频器4.7多级调制分数分频器4.7.1分数分频的新方法4.7.2具有∑-△结构的分数-N频率合成中的杂散信号4.7.3分数分频器的实现第5章低噪声微波频率合成器的设计原理5.1微波环路的基本框图5.2微波环路中的加性噪声5.3用环路滤波器改善输出噪声5.4微波频率合成举例5.4.1超低噪声微波频率合成器5.4.2雷达和通信系统中的低噪声频率合成器第6章新的DDS结构6.1混合DDS6.1.1混合DDS结构6.1.2800MHz混合DDS6.2DDS后接重复分频和混频器6.2.1总的要求6.2.25100结构作为偏移合成器6.2.3混频和分频链的前后端6.3综合技术结构6.4IIR滤波方法6.4.1IIR谐振器6.4.2用TMS320C30产生正弦波6.5复位方法6.5.1无稳定性控制的IIR滤波器6.5.2有稳定性控制的IIR滤波器6.5.3有稳定性控制和小□值的IIR滤波器6.5.4DCSW方法6.5.5IIR-ALT方法6.6实现与试验结果6.6.1数值输出6.6.2模拟输出附录附录A:拉普拉斯变换附录B:z变换附录C:DDS输出的傅里叶变换附录D:正交调制器相位误差的数字相位预矫正
2023/9/12 9:37:32 14.51MB dds 数字频率合成 白居宪
1
西安交通大学凌永祥版,计算方法B上机大作业,包含程序,误差分析,主要包括Gauss消去法,列主元Gauss消去法,最小二乘拟合四次多项式及误差,Netwon迭代法求方程组
2023/9/9 12:45:38 104KB 计算方法
1
共 563 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡