天津大学非线性ode及在工程中的应用第一次作业源代码,应随课堂作业使用,包含作业中制作隐函数图像,画微分方程方向场以及求解线性齐次方程组
2023/11/18 0:21:22 132KB 作业附属代码
1
计量泵广泛应用于石油、化工及水处理领域,其驱动电机通常为三相异步电机。
提出一种隔膜计量泵三相异步电机转速控制方法。
应用直接反馈线性化理论,通过对系统状态方程求导,得到所需的坐标变换和非线性状态反馈变量,实现了三相异步电机控制系统的输入输出反馈线性化。
对线性化后的系统运用极点配置理论和跟踪控制器的设计予以求解。
仿真结果证实:当系统受到扰动时,电机转速仍能快速收敛,系统具有良好的动静态性能和鲁棒性,有助于提高计量泵在复杂环境下运行的稳定性和流量控制精度。
1
Matlab关于人工神经网络在预测中的应用的论文二-人工神经网络模型在研究生招生数量预测中的应用.pdf四、灰色人工神经网络人口总量预测模型及应用摘要:针对单一指标进行人口总量预测精度不高的问题,基于灰色系统理论和人工神经网络理论,用1990年至2004年中国人口总量序列建立并训练一个多指标的灰色人工神经网络人口总量预测模型。
对2005年至2007年的人口总量进行检验性预测,结果表明灰色人工神经网络模型大大提高了预测精度。
关键词:人口总量;
灰色系统;
BP人工神经网络;
灰色人工神经网络模型引言:本文从影响人口增长的诸多因素中筛选出6个主要因素,结合灰色系统思想与神经网络的优点建立了一个灰色人工神经网络(GreyArtificialNeuralNetwork,GANN)预测模型,对每一个指标分别用GM(1,1)模型选择最佳的维数进行预测,再利用神经网络非线性映射的特性把这6个指标进行非线性组合得到人口总量的预测结果。
该模型充分利用灰色系统弱化数据的随机性及其动态性和神经网络非线性映射的特性,发挥两者的优势,从而进一步提高预测精度。
中间内容省略~结语:由于传统遗传算法聚类算法本身的优点:在解决聚类问题上速度快、准确率高,加上免疫网络分类算法可以进行非监督学习,确定聚类数及聚类点,在实际聚类应用中有更广阔的适用性;
在这种独特的聚类算法的基础上,结合粗糙集理论构建了一种图像分割算法;
同时,通过实验证明该方法不但比传统的FCM算法聚类速度快,分割效果好,而且比文献[2]的分割准确度还要高。
由于该方法有在聚类上的无教师监督的独特优点,并且通过对人脑MR图聚类和分割的两个实验,证明了该分割算法比以往分割算法在具体应用上都有一定的提高。
灰色人工神经网络人口总量预测模型及应用.pdf五、人工神经网络模型在研究生招生数量预测中的应用摘要:研究生招生数量的确定涉国家政策、社会就业、人才需求、专业分布与需求等诸多因素,这些影响因素往往无法量化,而且各个影响因素之间关系错综复杂,简单的线性模型预测未来招生数量往往难以实现。
尝试采用人工神经网络模型,针对历年招生数量原始数据信息零散、隐含影响因素过多、诸多影响因素难以确定性描述等问题,通过对黑龙江省历年研究生招生数量进行系统分析,建立了人工神经网络预测模型,并对未来3年的招生数量进行了预测,预测结果较好,为该方面研究提供了新的研究思路与研究方法。
关键词:黑龙江省;研究生招生;预测;人工神经网络模型引言:关于研究生招生数量的确定,涉及诸多因素,例如国家政策、社会就业、人才需求、专业分布与需求等等。
这些影响因素往往无法量化,很难找出定量化的因素来进行分析,而这些因素又确确实实在很大程度上影响着研究生招生的数量及其分布。
以往分析预测方法主要是确定性数学模型和随机统计方法,例如有限单元法、有限差分法、灰色理论建模、回归分析、谐波分析、时间序列分析、概率统计法等。
这些方法多以线性理论为基础,考虑问题偏于简单化,导致预测精度不高。
本论文结合黑龙江省1981年—2004年的研究生招生规模,针对历年招生数量原始数据信息零散、隐含影响因素过多、诸多影响因素难以确定性描述等问题,探讨应用一种改进的BP网络模型对未来3年黑龙江省研究生招生规模进行预测,为该方面研究提供新的研究思路与研究模式,并渴望为用人单位、科研院校提供制定长远发展与建设规划提供参考。
中间内容省略~结语:采用人工神经网络模型可以有效的处理黑龙江省研究生数量中涉及的人为、政策等随机因素、难以量化等因素的干扰,拟合精度非常高,预测精度也相对较高,为未来研究生招生规模提供科学理论依据,为该方面研究提供新的研究方法与研究思路。
人工神经网络模型在研究生招生数量预测中的应用.pdf六、基于RBF人工神经网络模型预测棉花耗水量摘要:利用MATLAB工具箱,以平均气温、日照时数、平均风速为输入变量,建立了新疆石河子地区棉花耗水量的RBF人工神经网络预测系统,通过2008年实测数据的检验表明,此预测系统网络模型的绝对误差最大为0.0967mm/d、最小为0.0025mm/d、平均为0.0419mm/d,相对误差最大为2.6491%、最小为0.0341%、平均为0.8780%。
可见,网络模型预测的准确度较高,较以往的线性模型更合理,并且此网络训练花费的时间仅需0.0780s,具有一定的实用价值。
关键词:预测;
人工神经网络;
径向基函数;
棉花耗水量引言:计算机人工神经网络是20世纪8
2023/11/14 19:27:42 352KB matlab
1
提供非线性时间序列分析的基础理论介绍,为您提供坚实的数学基础。
2023/11/13 16:58:44 9.35MB 时间序列分析
1
光学超级通道多播,将一个超级通道同时复制到单个设备中的多个光谱位置,对于未来的光学网络来说,可能是一种很有前途的功能。
高非线性光纤(HNLF)中的多泵四波混频(FWM)是一种实现超通道多播的有效方法。
但是,如果不仔细配置泵的频率,则生成的副本将在频谱上分散,这将增加控制副本性能和管理频谱资源的难度。
在本文中,我们提出了一种递归泵相加(RPA)方案,该方案使副本的频谱聚合度高于我们以前的指数增长间隔(EGS)泵浦方案。
这种副本聚合技术可以减少远离原始通道的副本的相位不匹配,这对副本的性能很有帮助。
\{RPA\}方案还为多播提供了副本分配的附加选项。
基于\{RPA\}方案,我们通过实验证明了5个泵的1到21超通道多播。
与典型的7%前向纠错(FEC)阈值相比,所有副本的Q因子余量均超过2.3dB。
还研究了\{RPA\}和\{EGS\}泵方案之间的性能比较。
2023/11/13 1:33:39 3.34MB Aggregation techniques; Effective approaches;
1
SuiteSparse是世界上最优秀的系数矩阵处理工程之一。
但是SuiteSparse提供的官方代码仅包含在matlab、linux环境下编译的生成文件,不能生成在windows操作系统下VS环境下的C++库函数。
本文件包括一个库函数cs.cpp和一个头文件cs.h,其中的代码是移植自SuiteSparse官方代码中的Csparse原始代码,功能包括除了复数矩阵以外的所有功能,已成功在vs2010的c++环境下执行过,在毕业设计中用于求解超大型稀疏矩阵的线性方程组(也就是大型稀疏矩阵的除法)。
以下是SuiteSparse的介绍。
SuiteSparse是一组C、Fortran和MATLAB函数集,用来生成空间稀疏矩阵数据。
在SuiteSparse中几何多种稀疏矩阵的处理方法,包括矩阵的LU分解,QR分解,Cholesky分解,提供了解非线性方程组、实现最小二乘法等多种函数代码。
2023/11/11 17:04:26 21KB 稀疏矩阵运算 SuiteSparse vs2010
1
斯坦福机器学习编程作业machine-learning-ex3,Multi-classClassicationandNeuralNetworks神经网络模型,非线性模型题目,满分,2015最新作业答案Multi-classClassicationandNeuralNetworksMATLAB
2023/11/10 11:42:47 7.55MB 神经网络模型
1
TOMLAB是一个基于MATLAB的,支持多种求解算法的通用编程框架。
可以求解包括线性规划、二次规划、非线性规划、线性混合整数规划、非线性混合整数规划等几乎所有的优化问题。
求解性能非常优秀,编程简单易用,容易上手。
个人感觉非常不错。
打包文件中有TOMLAB软件,安装说明,Lisence,Demo程序。
2023/11/4 15:34:27 9.54MB TOMLAB 非线性 混合 整数
1
BP神经网络进行非线性函数拟合,大家可以直接拿去用的
2023/11/4 5:28:05 3KB BP神经网络
1
2阶水箱pid控制程序很好的额非线性的里面是m文件编写的程序
2023/11/4 2:33:48 2KB pid 程序
1
共 710 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡