配置:Myeclipse+tomcat+Mysql<br>运用技术Jsp+Serlvet+JavaBean+JDBC直连<br>下载后有说明文档<br>希望大家能够通过系统学习到知识<br>
2025/4/1 6:54:39 4.93MB java jsp 源码 航空订票系统
1
公开整理的“分区表数据集(2024-2025年)”是一份涵盖特定时间段内的详细分区数据资料。
这份数据集可能包含了不同区域、不同类型的分区信息,比如城市的行政区划、商业区划分,或者是根据特定标准(如人口、经济活动等)划分的区域数据。
该数据集的来源、规模、详细程度以及其数据字段的丰富性都将为相关研究或分析提供宝贵的信息。
由于数据集的范围是2024年至2025年,这意味着数据集将包含对未来区域规划、发展动态、以及可能的政策变化的预测和规划数据。
因此,它对于规划师、政策制定者、市场分析师、地产开发商等利益相关者都具有极高的价值。
通过这份数据集,他们能够洞察未来的趋势,从而作出更为明智的决策。
样例数据的链接提供了一个访问点,可以进一步了解数据集的具体内容和结构。
通过访问提供的链接,用户可以查看分区表数据集的具体格式、数据字段、以及数据的详细样例。
这有助于用户对数据集有一个直观的认识,并评估这份数据是否满足他们的需求。
由于这份数据集被标记为“数据集”,这意味着它是一份结构化或半结构化的数据集合,用于分析、统计、或机器学习等目的。
它可能包括各类区域的统计数据、地理信息系统(GIS)数据、面积、人口统计信息、以及可能的经济指标等。
此类型的数据集通常需要通过专门的数据分析工具或软件进行处理和分析,以便从中提取有用的信息。
在处理这类数据集时,需要考虑数据的完整性、准确性以及时效性。
完整性确保数据覆盖了所有相关的分区和字段,准确性则保证数据的每一个条目都是正确无误的,时效性保证数据反映了最新的区域信息。
此外,用户也需要关注数据的隐私和安全性问题,尤其是在处理可能涉及敏感信息的分区数据时。
这份数据集的提供者可能是政府机关、研究机构或私营公司。
他们可能出于研究目的、政策制定、市场分析等不同的动机进行了数据的搜集和整理工作。
无论来源如何,这份数据集都可能经过了严格的筛选和清洗过程,以确保数据的质量和可用性。
对于准备使用这份数据集的用户来说,理解数据集的背景、目的、以及如何解读数据集中的信息是非常关键的。
这通常需要具备一定的专业知识,比如地理学、统计学、数据科学等领域的知识,来确保分析结果的科学性和准确性。
公开整理的“分区表数据集(2024-2025年)”是一份包含未来期间区域划分详细信息的数据集合,它为各种应用场景提供了宝贵的数据支持。
通过理解其结构和内容,用户可以深入挖掘数据背后的潜在价值,为决策提供坚实的数据基础。
这份数据集对于需要进行区域分析的研究者和决策者来说,无疑是一份重要的资源。
2025/3/31 20:19:02 1.8MB 数据集
1
【新能源微电网】新能源微电网是由分布式电源、储能设备、能量转换装置等组成的微型发配电系统,能够在独立或并网状态下运行,具有自我控制、保护和管理能力。
它结合了新能源发电,如太阳能和风能,以提高能源利用率,尤其在偏远地区提供电力供应。
然而,新能源的不稳定性给微电网的运行带来了挑战,如发电量预测和电网管理的困难。
【人工智能神经网络】人工神经网络是人工智能的核心组成部分,模拟生物神经网络结构,用于解决复杂问题,如信息处理和学习。
在新能源微电网领域,神经网络主要用于处理非线性和复杂的预测任务,如风力发电量和电力负荷的预测。
主要的神经网络分词法有:神经网络专家系统分词法和神经网络分词法,前者结合了神经网络的自学特性与专家系统的知识,后者通过神经网络的内在权重来实现正确分词。
【RBF神经网络】径向基函数(RBF)神经网络是神经网络的一种,常用于预测任务。
它由输入层、隐藏层和输出层组成,其中隐藏层使用RBF作为激活函数,实现输入数据的非线性变换,从而适应复杂的数据模式。
在微电网中,RBF神经网络用于短期负荷预测,能有效处理非线性关系,降低外部因素对预测的干扰。
【微电网短期负荷预测】短期负荷预测对于微电网的能量管理和运行优化至关重要。
通过构建RBF神经网络模型,可以预测未来一定时间内的负荷变化。
预测模型的建立通常需要选择与负荷密切相关的输入数据,如时间、气温、风速等,并进行数据预处理。
MATLAB等工具可用于进行网络训练和仿真,以生成预测结果。
【风力发电预测】RBF神经网络同样适用于风力发电量的预测。
通过对风速、气压等相关因素的预测,可以估算微电网系统的风力发电潜力,帮助维持系统的稳定运行,减少风电波动对微电网的影响。
总结来说,人工智能神经网络,尤其是RBF神经网络,为解决新能源微电网中的挑战提供了有效工具。
通过精确预测新能源发电量和电力负荷,可以优化微电网的运行效率,确保其稳定性和自给自足的能力。
此外,这种技术还能促进可再生能源的有效利用,有助于推动能源行业的可持续发展。
1
本书从实际应用入手,以实验过程和实验现象为主导,循序渐进地讲述51单片机C语言编程方法以及51单片机的硬件结构和功能应用。
全书共分5篇,分别为入门篇、内外部资源操作篇、提高篇、实战篇和拓展篇。
本书配套光盘提供13讲近30学时的教学视频和本书实例代码,可使读者更快更好地掌握单片机知识和应用技能。
第1篇入门篇第1章基础知识必备第2章Keil软件使用及流水灯设计第2篇内外部资源操作篇第3章数码管显示原理及应用实现第4章键盘检测原理及应用实现第5章A/D和D/A工作原理第6章串行口通信原理及操作流程第7章通用型1602,12232,12864液晶操作方法第8章I2C总线AT24C02芯片应用第9章基础运放电路专题第3篇提高篇第10章定时器/计数器应用提高第11章串行口应用提高第12章指针第13章STC系列51单片机功能介绍第4篇实战篇第14章利用51单片机的定时器设计一个时钟第15章使用DS12C887时钟芯片设计高精度时钟第16章使用DS18B20温度传感器设计温控系统第17章太阳能充/放电控制器第18章VC、VB(MSCOMM控件)与单片机通信实现温度显示第5篇拓展篇第19章使用Protell99绘制电路图全过程第20章ISD400x系列语音芯片应用第21章电机专题第22章常用元器件介绍第23章直流稳压电源专题第24章运放扩展专题附录A天祥电子开发实验板简介
2025/3/30 6:32:56 132.47MB 单片机 新概念 郭天祥 C语言
1
二级公共基础知识电子版
2025/3/30 3:29:57 857KB ybb
1
CCNA1网络基础知识-官网章节测试答案(中文版)
2025/3/29 16:43:20 3.05MB CCNA 网络基础知识 官网 章节测试
1
DeepLearningToolbox™提供了一个框架,用于设计和实现具有算法,预训练模型和应用程序的深度神经网络。
您可以使用卷积神经网络(ConvNets,CNN)和长期短期记忆(LSTM)网络对图像,时间序列和文本数据进行分类和回归。
应用程序和图表可帮助您可视化激活,编辑网络体系结构以及监控培训进度。
对于小型训练集,您可以使用预训练的深层网络模型(包括SqueezeNet,Inception-v3,ResNet-101,GoogLeNet和VGG-19)以及从TensorFlow™-Keras和Caffe导入的模型执行传输学习。
了解深度学习工具箱的基础知识深度学习图像从头开始训练卷积神经网络或使用预训练网络快速学习新任务使用时间序列,序列和文本进行深度学习为时间序列分类,回归和预测任务创建和训练网络深度学习调整和可视化绘制培训进度,评估准确性,进行预测,调整培训选项以及可视化网络学习的功能并行和云中的深度学习通过本地或云中的多个GPU扩展深度学习,并以交互方式或批量作业培训多个网络深度学习应用通过计算机视觉,图像处理,自动驾驶,信号和音频扩展深度学习工作流程深度学习导入,导出和自定义导入和导出网络,定义自定义深度学习图层以及自定义数据存储深度学习代码生成生成MATLAB代码或CUDA®和C++代码和部署深学习网络函数逼近和聚类使用浅层神经网络执行回归,分类和聚类时间序列和控制系统基于浅网络的模型非线性动态系统;使用顺序数据进行预测。
2025/3/29 11:02:30 14.06MB deep l matlab 深度学习
1
在分布式服务框架中,一个最基础的问题就是远程服务是怎么通讯的,在Java领域中有很多可实现远程通讯的技术,例如:RMI、MINA、ESB、Burlap、Hessian、SOAP、EJB和JMS等,这些名词之间到底是些什么关系呢,它们背后到底是基于什么原理实现的呢,了解这些是实现分布式服务框架的基础知识,而如果在性能上有高的要求的话,那深入了解这些技术背后的机制就是必须的了,在这篇blog中我们将来一探究竟,抛砖引玉,欢迎大家提供更多的实现远程通讯的技术和原理的介绍。
要实现网络机器间的通讯,首先得来看看计算机系统网络通信的基本原理,在底层层面去看,网络通信需要做的就是将流从一台计算机传输到另外一
1
vc++数字图像处理的入门级好书,详细介绍了图像处理的基本知识以及相应的c++实现,通过本书可以全面的学习数字图像处理的全部知识。
2025/3/27 13:34:32 19.06MB vc++ 图像处理
1
主要的内容包括下面几个要点在java环境下的设计和实现:知识、知识模板、知识类别等。
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡