常用的7种C#遗传算法源码实例集本压缩包内收集了一些C#常用的7种遗传算法,这些算法主要是保存超个体的基本遗传算法、仿生双倍体遗传算法、人工双倍体遗传算法、保存历史最优解的遗传算法、保存历史最优解的仿生双倍体遗传算法等,另外,对随机数的产生机制进行了优化,在内层循环中也能产生高质量的随机数。
部分功能可通过源码爱好者测试截图中看出,这里不再详述。
2024/8/18 18:43:36 26KB 常用的7种 C# 遗传算法源码实例集
1
自己编写的五子棋,具备双人对战模式,电脑对战模式,具备禁手规则,可能禁手规则不完美。
2024/8/15 22:28:03 1.29MB winform 五子棋 电脑对战 双人对战
1
此代码可以实现在VS2013上读取并绘制OBJ点云文件,并且以双试图显示,注释清晰明了,便于初学者的学习,可以完整运行!
2024/8/14 2:56:50 426KB MFC OpenGL OBJ 窗口分割
1
苹果CMS10基础双端+微信小程序+封包有教程推荐有一定架设基础者下载后台去授权不可升级后台否则授权会掉
1
Msys:1.0.10MinGW:5.1.4make:3.81.90gcc:4.3.2w32api:3.13SDL:1.2.1MinGW-Runtime:3.15MINGW+MSYS环境已经配置完成。
移植到其他电脑上时需要根据情况做修改:若msys文件夹放在D盘根目录下,找到D:\msys\1.0\etc\fstab,以记事本或写字板打开,将以下所示部分改为现在实际所在的路径,即D:/msys/1.0/mingw。
若在C盘,则无需更改。
#Win32_PathMount_Pointc:/msys/1.0/mingw/mingw注意是/,不是\,因为linux下的路径都是用/的。
若电脑上安装了VC++,找到c:\msys\1.0\msys.bat并以记事本或写字板或notepad打开,在第一行添加:call"C:\ProgramFiles\MicrosoftVisualStudio\VC98\Bin\VCVARS32.BAT"双引号内的路径不固定,以VC安装的路径为准。
msys使用技巧:复制:选中一段文字,就将这段文字复制到剪贴板。
粘贴:shift+鼠标左键,就将剪贴板的内容粘贴到命令行了。
参考文章地址:http://blog.csdn.net/bihaichentian/archive/2010/08/20/5826859.aspxFFMPEG-0.6的配置1.解压后拷贝到c:/msys/home/目录下。
(C:/msys/home/ffmpeg-0.6)2.运行c:/msys.bat,进入c:/msys/home/ffmpeg-0.5源码目录,创建release目录(madirrelease)和debug目录(mkdirdebug)目录,视需求编译release或debug版本:3.进入c:/msys/home/ffmpeg-0.5/release目录下执行:../configure--disable-static--enable-shared--enable-small--enable-memalign-hack--enable-gpl--extra-cflags=-I/local/include--extra-ldflags=-L/local/lib5.或进入c:/msys/home/ffmpeg-0.5/debug目录下执行:../configure--disable-static--enable-shared--enable-memalign-hack--enable-gpl--extra-cflags=-I/local/include--extra-ldflags=-L/local/lib--enable-debug=3--disable-optimizations--disable-stripping6.make7.makeinstall
2024/8/12 13:57:15 17.64MB minGW Windows
1
目录第1章数字信号处理引言  1.1引言  1.2数字信号处理起源  1.3信号域  1.4信号分类  1.5DSP:一个学科第2章采样原理  2.1引言  2.2香农采样原理  2.3信号重构  2.4香农插值  2.5采样方法  2.6多通道采样  2.7MATLAB音频选项第3章混叠  3.1引言  3.2混叠  3.3圆判据  3.4IF采样第4章数据转换和量化  4.1域的转换  4.2ADC分类  4.3ADC增强技术  4.4DSP数据表示方法  4.5量化误差  4.6MAC单元  4.7MATLAB支持工具第5章z变换  5.1引言  5.2z变换  5.3原始信号  5.4线性系统的z变换  5.5z变换特性  5.6MATLABz变换设计工具  5.7系统稳定性  5.8逆z变换  5.9赫维赛德展开法  5.10逆z变换MATLAB设计工具  第6章有限冲激响应滤波器[1]6.1引言  6.2FIR滤波器  6.3理想低通FIR滤波器  6.4FIR滤波器设计  6.5稳定性  6.6线性相位  6.7群延迟  6.8FIR滤波器零点位置  6.9零相位FIR滤波器  6.10最小相位滤波器第7章窗函数设计法  7.1有限冲激响应综述  7.2基于窗函数的FIR滤波器设计  7.3确定性设计  7.4数据窗  7.5基于MATLAB窗函数的FIR滤波器设计  7.6Kaiser窗函数  7.7截尾型傅里叶变换设计方法  7.8频率采样设计法第8章最小均方设计方法  8.1有限冲激响应综述  8.2最小二乘法  8.3最小二乘FIR滤波器设计  8.4MATLAB最小均方设计  8.5MATLAB设计对比  8.6PRONY方法第9章等波纹设计方法  9.1等波纹准则  9.2雷米兹交换算法  9.3加权等波纹FIR滤波器设计  9.4希尔伯特等波纹FIR滤波器  9.5等波纹滤波器阶次估计  9.6MATLAB等波纹FIR滤波器实现  9.7LPFIR滤波器设计  9.8基于Lp范数的MATLAB滤波器设计第10章FIR滤波器特例  10.1引言  10.2滑动平均FIR滤波器  10.3梳状FIR滤波器[1]10.4L波段FIR滤波器  10.5镜像FIR滤波器  10.6补码FIR滤波器  10.7频率抽样滤波器组  10.8卷积平滑FIR滤波器  10.9非线性相位FIR滤波器  10.10FarrowFIR滤波器第11章FIR的实现  11.1概述  11.2直接型FIR滤波器  11.3转置结构  11.4对称FIR滤波器结构  11.5格型FIR滤波器结构  11.6分布式算法  11.7正则符号数  11.8简化加法器图  11.9FIR有限字长效应  11.10计算误差  11.11缩放  11.12多重MAC结构[1]第12章经典滤波器设计  12.1引言  12.2经典模拟滤波器  12.3模拟原型滤波器  12.4巴特沃斯原型滤波器  12.5切比雪夫原型滤波器  12.6椭圆原型滤波器  12.7原型滤波器到最终形式的转换  12.8其他IIR滤波器形式  12.9PRONY(PADE)法  12.10尤尔—沃尔第13章无限冲激响应滤波器设计  13.1引言  13.2冲激响应不变法  13.3冲激响应不变滤波器设计  13.4双线性z变换法  13.5翘曲  13.6MATLABIIR滤波器设计  13.7冲激响应不变与双线性z变换IIR对比  13.8最优化第14章状态变量滤波器模型  14.1状态空间系统  14.2状态变量  14.3模拟仿真  14.4MATLAB仿真  14.5状态变量模型  14.6基变换  14.7MATLAB状态空间  14.8转置系统  14.9MATLAB状态空间算法结构第15章数字滤波器结构  15.1滤波器结构  15.2直Ⅰ、Ⅱ型结构  15.3直Ⅰ、Ⅱ型IIR滤波器的MATLAB相关函数  15.4直Ⅰ、Ⅱ型结构的MATLAB实现  15.5级联型结构  15.6一阶、二阶子滤波器  15.7一阶、二阶子滤波器的MATLAB实现[1]15.8并联型结构  15.9级联/并联型结构的MATLAB实现  15.10梯型/格型IIR滤波器第16章定点效应  16.1背景  16.2定点系统  16.3溢
1
帮助FreeBSD操作系统完成双因素身份认证,保护系统登录安全,同时讲述双因素认证实现原理、认证方法、接入方式等
2024/8/11 16:16:50 2.34MB 身份认证 双因素认证
1
BLDC的电流,速度双闭环的6步换向法的Simulink仿真
2024/8/10 19:34:45 33KB BLDC simulink 双闭环
1
报道了基于空芯光纤的1.5μm光纤气体拉曼激光放大器。
实验以一个1.5μm波段的可调谐分布式反馈激光器为种子源,输出的连续波种子激光与1064nm微芯片激光器的输出脉冲抽运激光通过双色镜一起耦合进充乙烷气体的空芯光纤中,通过乙烷分子的受激拉曼散射实现了高效率的1553nm拉曼激光输出。
种子光的注入极大地降低了受激拉曼散射阈值,从而将拉曼光-光转换效率提高到47.5%。
该研究为实现高效率的光纤气体拉曼激光输出提供了一条有效的技术途径。
2024/8/9 16:24:58 4.29MB 激光器 空芯光纤 激光放大 气体激光
1
基于直接功率控制的双馈风力发电系统及其低电压穿越
2024/8/6 9:41:13 2.18MB 直接功率 控制 双馈风力 发电系统
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡