第一章绪论1.1天体力学的发展简史与研究内容;
1.2现代天体力学的主要研究领域第二章二体问题2.1任意外形天体的引力势;
2.2二体运动方程与经典积分;
2.3二体运动轨道类型;
2.4空间与质心系中二体运动轨道;
2.5椭圆展开与平均值;
2.6椭圆运动的正则根数第三章限制性三体问题3.1N体问题地经典积分与特解;
3.2N体运动的Jacobi坐标;
3.3限制性三体问题;
3.4圆型限制性三体问题;
3.5平动点的线性稳定性;
3.6限制性三体问题中的混沌运动第四章受摄二体问题4.1Gauss型受摄运动方程;
4.2正则受摄运动方程;
4.3第三体摄动的摄动函数展开;
4.4线性长期摄动理论;
4.5主天体外形摄动;
4.6太阳系中主要耗散力第五章天体运动中的共振现象5.1轨道共振的基本模型;
5.2低阶轨道共振的相空间结构;
5.3小行星带的3:1Kirkwood共振;
5.4长期共振;
5.5自转-轨道共振;
5.6潮汐演化第六章保守系统中的有序与混沌运动6.1Hamilton系统相流的特点及奇点稳定性;
6.2可积Hamilton系统;
6.3有心力势场下质点的运动;
6.4近可积Hmailton系统6.5标准映射
1
最优化理论基础、线搜索技术、最速下降法和牛顿法、共轭梯度法、拟牛顿法(BFGS、DFP、Broyden族算法)、信任域方法、非线性最小二乘问题(Gauss-Newton、Levenberg-Marquardt)、最优性条件(等式约束问题、不等式约束问题、一般约束问题、鞍点和对偶问题)、罚函数法(外罚函数、内点法、乘子法)、可行方向法(Zoutendijk可行方向法、梯度投影法、简约梯度法)、二次规划(等式约束凸二次规划、一般凸二次规划)序列二次规划(牛顿-拉格朗日法、SQP方法)
2018/10/21 13:09:19 2.58MB MATLAB 优化算法
1
共附带了5个m文件,其中pyr_reduce.m和pyr_expand.m分别实现了一次滤波+降采样和滤波+升采样操作;
genPyr.m调用这两者,实现高斯和拉普拉斯金字塔的生成;
pyrReconstruct.m则实现了由金字塔进行图像重构的操作。
最初,pyrBlend.m进行了图像融合的实验。
还有三张试验图片
2022/9/3 13:08:49 36KB pyramid matlab blend 高斯
1
东北大学软件学院数值分析课程实验题,完成Gauss消元、J迭代、GS迭代、SOR迭代和最小二乘法
2022/9/3 4:27:50 4KB Gauss J迭代 GS迭代 SOR迭代
1
高斯牛顿.datasets.py-非线性回归问题。
gaussnewton.py简单的非线性最小二乘问题求解器。
graph.py图形生成脚本。
img/-由graph.py生成的graph.py。
要求Python2.7NumPy意味Matplotlib
2020/9/18 3:40:16 46KB Python
1
对于研一同学,数值计算的编程大作业是不可避免的一项任务。
本资源包含以下6个大作业的具体数学原理、实验结论和matlab程序,每一步matlab程序本人都尽做大程度进行标注,不懂的地方可以私信我实验一:利用拉格朗日的插值多项式的振荡景象(等距节点、随机节点、分段二次插值、切比雪夫多项式零点)实验二:最小二乘曲线拟合(直线、抛物线进行最小二乘拟合及验证)实验三:数值积分(变步长复化梯形公式、变步长复化辛普森、龙贝格法)实验四:线性方程组数值求解(Cholesky分解、LU分解、Jacobi迭代法、Gauss-Seidel迭代法)实验五:非线性方程求根(二分法、Newton法、弦截法)实验六:常微分初值问题数值解法(改进欧拉法、经典四阶龙格库塔法)
2020/6/10 11:04:34 6.84MB matlab 数值计算 研究生大作业
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡