主要在VC6.0上用MFC完成的排序算法和搜索算法:首先弹出一个对话框,上面有排序前和排序后的编辑框,在排序前编辑框中输入整型数组,然后选择排序的方法,点排序按钮即将排序好的数组呈现在排序后的编辑框中。
排序顺序分“升序”和“降序”,排序方法总共7种,分别是:冒泡排序,简单选择排序,直接插入排序,希尔排序,快速排序,堆排序和基数排序。
这些方法都是用c++实现的。
还有一个搜索的功能,分别可以“线性搜索”和“二分搜索”,线性搜索时从排序前的数组中搜索,二分搜索时从排序后的数组中搜索,且必须为升序排序后的数组。
2026/1/4 5:52:51 53KB 搜索 排序 算法
1
BezierSurface.cpp为bezier曲面绘制的源程序,并且按鼠标右键菜单可实现,1显示控制点2。
显示网格曲面,3显示光照曲面,4图案纹理曲面,5文件图
2026/1/4 3:53:15 322KB Bezier
1
DBSCAN,全称为Density-BasedSpatialClusteringofApplicationswithNoise,是一种在数据挖掘和机器学习领域广泛应用的聚类算法。
它与传统的K-Means、层次聚类等方法不同,DBSCAN不依赖于预先设定的簇数量,而是通过度量数据点的密度来自动发现具有任意形状的聚类。
在MATLAB中实现DBSCAN可以帮助我们分析复杂的数据集,识别出其中的模式和结构。
DBSCAN算法的基本思想是将高密度区域视为聚类,低密度区域视为噪声或边界。
它主要由两个关键参数决定:ε(epsilon)半径和minPts(最小邻域点数)。
ε定义了数据点周围的邻域范围,而minPts则指定了一个点成为聚类中心所需的邻域内最少点的数量。
如果一个点在其ε邻域内有至少minPts个点(包括自身),那么这个点被标记为“核心点”。
核心点可以连接形成聚类,只要这些点之间的路径上存在其他核心点,且路径上的所有点都在ε半径内。
在MATLAB中实现DBSCAN,通常会涉及以下步骤:1.**数据预处理**:我们需要加载数据,可能需要进行数据清洗、归一化等操作,以确保算法的有效运行。
2.**设置参数**:根据数据集的特点,选择合适的ε和minPts值。
这通常需要实验调整,找到既能有效区分聚类又能排除噪声的最佳参数。
3.**邻域搜索**:使用MATLAB的邻域搜索工具,如kd树(kdtree)或球树(balltree),快速找出每个点的ε邻域内的点。
4.**核心点、边界点和噪声点的识别**:遍历所有数据点,依据ε和minPts判断每个点的类型。
5.**聚类生长**:从每个核心点开始,将与其相连的核心点加入同一聚类,直到找不到新的相连点为止。
6.**结果评估**:使用合适的评价指标,如轮廓系数,评估聚类的质量。
在MATLAB中,可以使用`clusterdata`函数配合`dbscan`选项来实现DBSCAN,或者直接使用第三方库如`mlpack`或自定义代码来实现更灵活的控制。
例如:```matlab%假设X是数据矩阵tree=pdist2(X,X);%计算所有点之间的距离[~,~,idx]=knnsearch(tree,X,'K',minPts+1);%获取每个点的minPts近邻density=sum(idx>1,2);%计算每个点的密度%执行DBSCANcc=clusterdata(X,'Method','dbscan','Eps',epsilon,'Minpts',minPts);%输出聚类结果disp(cc);```DBSCAN的优势在于它可以发现不规则形状的聚类,并对异常值具有良好的鲁棒性。
然而,它的缺点是参数选择较困难,且对于高维数据性能可能下降。
因此,在实际应用中,我们需要结合具体的数据集和需求,适当调整参数,以获得最佳的聚类效果。
同时,理解DBSCAN的原理并掌握其MATLAB实现,对于数据科学家来说是非常重要的技能。
2026/1/4 0:49:14 121KB
1
代码亲测好用,可以提取两幅图像的同名点,并且可以筛选,筛选后精度很高,可用于两幅图像配准,拼接为一副整图像,拼接的效果很好。
可以在main函数直接使用,便会调用所用函数,使用很方便。
而且代码注释很仔细,不管是学习还是工作,都是一个很好的选择。
1
Miniconda3是一款轻量级的Anaconda发行版,它为Python开发人员提供了一个便捷的环境管理工具,用于安装和管理科学计算所需的软件包。
在标题"Miniconda3-py39_23.9.0-0-Windows-x86_64.zip"中,我们可以提取出几个关键信息:1.**Miniconda3**:这是该软件的基础名称,表明这是一个针对Python的迷你版Anaconda环境。
2.**py39**:这代表了该版本的Miniconda支持的是Python3.9版本。
Python3.9是Python的一个重要版本,提供了许多性能改进和新功能。
3.**23.9.0-0**:这是Miniconda的版本号,表明这是特定时间点的构建,数字0可能表示次要更新或补丁。
4.**Windows-x86_64**:指出这是为64位Windows操作系统设计的版本。
x86_64是64位处理器架构的通用术语。
描述中的"Miniconda3-py38-31064位"似乎是一个小的混淆,因为标题中明确指出是py39版本,而不是py38。
但通常,Miniconda会支持多个Python版本,这里可能是用户提及了另一个相关的版本。
**Miniconda3的核心特性**:1.**包管理器**:Miniconda包含conda,一个强大的包和环境管理器,可以轻松安装、升级和卸载Python及其依赖包。
2.**环境隔离**:通过conda,你可以创建多个独立的Python环境,每个环境都可以有自己的Python版本和包集合,避免了不同项目间的依赖冲突。
3.**跨平台**:Miniconda支持Windows、macOS和Linux等操作系统,使得代码在不同平台上可移植。
4.**预编译软件包**:conda仓库中包含了大量预先编译好的科学计算库,无需用户自行编译,节省了时间和资源。
在提供的压缩包子文件名称列表中,我们看到"Miniconda3-py39_23.9.0-0-Windows-x86_64.exe"是一个可执行文件,这通常是Windows系统的安装程序。
用户下载这个文件后,运行安装程序即可在本地系统上安装Miniconda3的Python3.9版本。
**安装和使用Miniconda3**:1.下载并运行.exe文件,按照安装向导的指示进行操作。
2.安装过程中,可以选择将Miniconda3添加到系统路径,这样在命令行中可以直接使用conda命令。
3.安装完成后,打开命令行,输入`condainit`来配置环境变量。
4.使用`condacreate-nmyenvpython=3.9`创建一个新的名为myenv的Python3.9环境。
5.通过`condaactivatemyenv`激活环境,然后可以安装所需软件包,如`condainstallnumpypandas`。
6.当完成工作后,用`condadeactivate`退出当前环境。
Miniconda3是一个针对Python开发者的优秀工具,它提供了方便的环境管理和包管理功能,尤其适合于科学计算和数据分析领域。
通过下载和安装Miniconda3,用户可以轻松地在本地计算机上建立和管理多个Python环境,以满足不同项目的需求。
2026/1/3 21:31:46 68.9MB Miniconda3
1
知识必须积累,但同时需要整理,只有有条理的成体系的知识,才能带来真正的价值。
在这个知识爆炸的时代,我们需要一种有效的手段管理各种知识。
知识天生是一种“网状”结构,很类似于互联网上相互链接的网页,各知识点之间有着复杂的相互关联。
然而,从高效掌握并应用知识的角度来看,将知识组织成为类似于计算机文件系统的多叉树比网状结构更有效,这是由人的认知特性决定的。
因此本课程的结课设计,就是开发一个“个人资料管理”工具软件,采用树型结构管理各种知识。
2026/1/3 0:17:32 66.57MB 个人资料管理 人大 网上人大
1
PCL的VoxelGrid类和ApproximateVoxelGrid类实现基于体素的滤波方法对点云进行下采样,八叉树同样也是建立体素,因此基于八叉树的体素同样可以对点云进行下采样。
PCL中有现成函数可实现求解八叉树体素中心,所以最简单的方法就是用八叉树的体素中心点来代替每一个体素内的点,从而实现点云的下采样。
注意:这种方法与ApproximateVoxelGrid基本相同,都是以中心点代替体素内的点。
惟一的区别是:ApproximateVoxelGrid可以自由设置体素的长宽高,而八叉树只能是构建正方体的体素。
  代码中也实现了对八叉树体素滤波的改进,即用距离体素中心点最近的点来代替
2026/1/2 22:58:49 442KB filter
1
很好用的EIS阻抗谱分析软件,内含教程,操作简单。
有一点要注意,用这人软件做拟合元件时,光标点到已添加的元件,点右键才能继续添加
2026/1/2 22:52:28 8.76MB ZView eis
1
【理光MP18132001L2501L2501SP2001SP2013复印机中文维修手册】这个压缩包文件提供了关于理光品牌多款复印机的详细维修指南,包括MP1813、2001L、2501L、2501SP、2001SP以及2013型号。
这份手册是中文版,特别适合中文环境下的技术人员进行故障诊断和维修工作。
下面我们将深入探讨这些型号复印机可能涉及的关键技术点和常见问题解决方案。
一、基础结构与工作原理理光的这些复印机采用了先进的激光打印技术,结合了扫描、打印、复印和传真等多种功能。
核心组件包括激光扫描单元(LSU)、显影单元、转印鼓、定影器等。
工作流程大致为:激光扫描产生电子图像,显影单元将图像转为墨粉,转印鼓吸附并转印到纸上,最后定影器将墨粉熔化固定。
二、常见故障及解决方法1.打印质量下降:可能是显影剂不足或老化,需要更换显影单元;
也可能是硒鼓磨损,需更换硒鼓。
2.无法打印:检查纸张是否正确放置,纸路是否有堵塞,激光扫描单元是否正常工作。
3.复印机报错:根据错误代码查阅手册中的故障代码表,判断问题所在,如电源、网络或硬件故障。
4.定影问题:若打印出的文档墨粉未固定,可能是定影器温度不达标或定影滚筒损坏。
三、维护与保养1.定期清理纸屑和尘埃,避免阻塞机器内部。
2.按照制造商建议更换耗材,如墨粉、硒鼓等。
3.定期检查并更换冷却风扇,确保机器散热良好。
4.检查和清洁感光鼓、转印鼓等关键部件,防止图像质量下降。
四、故障诊断与检测手册中应包含详细的故障诊断流程和检测方法,如使用测试页、故障自检程序等,帮助技术人员快速定位问题。
五、软件更新与设置针对网络功能的复印机,可能会涉及固件升级和网络配置,手册会提供详细步骤,以确保设备的稳定运行和兼容性。
六、安全操作与环保在维修过程中,应遵循安全操作规程,防止电击、烫伤等风险。
同时,手册还会提醒用户正确处理废弃的墨粉和机器零件,以实现环保处理。
这份中文维修手册是维修和保养理光MP系列复印机的重要参考资料,对于提高工作效率、减少停机时间和降低维修成本具有重要意义。
技术人员应仔细研读并熟练掌握其中的技术要点和故障处理策略,以便于在实际工作中迅速解决问题。
2026/1/2 5:22:27 28.5MB MP2501
1
蓝牙mesh是一种先进的网络技术,它允许低功耗蓝牙设备形成一个大型的网络,从而实现设备间的通信和数据传输。
蓝牙mesh网络特别适合于需要大量设备协同工作的场景,比如智能家居、工业控制等。
在蓝牙meshV1.0资料中,首先需要了解的是蓝牙mesh网络的基本要求。
蓝牙meshV1.0版本是由蓝牙特别兴趣小组(BluetoothSIG)的Mesh工作组准备的,该工作组由蓝牙领域内的众多公司和专业人员组成,如高通技术国际有限公司、博通公司、谷歌公司、英特尔公司等。
这些贡献者的名单列在了文档中,体现了这一技术背后广泛的合作与支持。
蓝牙meshV1.0的主要目的是定义一套标准,以便开发出可以互操作的蓝牙低功耗网格网络解决方案。
这标志着蓝牙技术在无线通信领域的一大进步,使得蓝牙技术不仅仅局限于点对点的通信,而是能够构建复杂、健壮的网络结构。
蓝牙mesh技术的诞生,使得蓝牙技术的应用范围得到了极大的拓展。
MeshProfile/SpecificationRevisionHistory部分记录了蓝牙mesh标准的修订历史,显示了蓝牙meshV1.0是在2017年7月13日被蓝牙SIG董事会采纳的。
此外,蓝牙mesh的标准文档有331页之多,其中详细描述了蓝牙mesh网络的所有操作细节,包括其工作原理、节点的角色(如朋友节点、中继节点、代理节点)、安全性要求等。
在使用蓝牙meshV1.0标准文档时,需要特别注意文档中的版权和免责声明。
文档的使用意味着用户同意遵守这些声明,并且在使用、解释和应用本规范时,建议寻求适当的法律、工程和其他专业咨询。
蓝牙SIG的成员在使用本规范时,还受到其与成员间的协议条款的约束,任何不符合这些协议的使用都是禁止的,并可能导致协议终止和知识产权侵权责任。
蓝牙mesh网络架构的关键特点之一是其支持的广播通信模型。
节点可以使用广播地址发送消息,而网络上的其他节点可以接收这些消息。
蓝牙mesh网络还支持按组通信,即可以创建一个组地址,使得一组设备可以接收发送到该组地址的广播消息。
这种架构设计使得蓝牙mesh网络能够满足大型网络场景下的需求,实现高效、可靠的多对多通信。
安全性方面,蓝牙mesh网络强调对数据的加密和安全传输。
为了保障数据传输的安全性,蓝牙mesh提供了多种加密机制,包括数据加密和网络密钥管理等。
这些安全措施确保了在蓝牙mesh网络中传输的数据不会被未授权的设备解密和访问,从而保护了用户的隐私和数据安全。
蓝牙meshV1.0为蓝牙技术提供了强大的网络化能力,不仅增加了蓝牙技术的实用性,也为其在物联网(IoT)领域的应用奠定了坚实的基础。
了解蓝牙mesh技术的这些关键知识点,对于无线蓝牙mesh开发工程师来说是非常重要的,也是他们进行相关开发工作时必须掌握的基础。
2026/1/1 21:03:40 5.26MB 蓝牙mesh
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡