本书从工程应用的角度论述小波分析的基本理论与算法,跟踪小波应用的发展前沿,详细介绍了小波变换的理论、MATLAB实现方法和有代表性的工程应用。
2025/6/15 6:47:41 15.39MB 小波分析 mat
1
识别率的提升是图像处理技术的关键环节,笔者针对第二代曲波变换算法在图像识别处理过程中,所存在的图像边缘“振铃”效应和由于“楔形基”的特性所导致的图像失真问题,提出了第二代曲波加权改进算法及对图像识别的实现过程,并且分别通过ORL和Yale图像进行了对比仿真实验,证明了较传统的小波加权双向二维主成分分析算法在对识别中有明显的提高,从而验证了该算法在图像识别处理上的可行性和有效性。
1
设计步骤:1、语音信号的采集利用Windows下的录音机录制一段自己的话音,或采用其它软件截取一段音乐信号,然后在Matlab软件平台下,利用函数wavread对语音信号进行采样,记住采样频率和采样点数。
2、语音信号的频谱分析在Matlab中,可以利用函数FFT对信号进行快速傅立叶变换,得到信号的频谱特性,要求学生首先画出语音信号的时域波形,然后对语音信号进行频谱分析。
3、对语音信号分别加入正弦噪声和高斯白噪声,使信噪比为(学号)dB,画出加噪信号的时域波形和频谱图;
关于噪声信号,噪声类型分为如下几种:(1)白噪声;
(2)单频噪声(正弦干扰);
(3)多频噪声(多正弦干扰);
(4)其他干扰,如低频、高频、带限噪声,或chirp干扰、充激干扰。
4、设计数字滤波器,并画出其频率响应。
对叠加噪声前后的信号进行频谱分析,确定降噪的滤波器指标;
或者根据如下给定的滤波器性能指标:(1)低通滤波器的性能指标:=1000Hz,=1200Hz,=1dB,=100dB;
(2)高通滤波器的性能指标:=4800Hz,=5000Hz,=100dB,=1dB.(3)带通滤波器的性能指标:=1200Hz,=3000Hz,=1000Hz,=3200Hz,=100dB,=1dB。
采用窗函数法设计上面要求的3种滤波器,并画出滤波器的频率响应;
5、用滤波器对信号进行滤波用自己设计的滤波器对加噪信号进行滤波,画出滤波后信号的时域波形及频谱,并对滤波前后的信号进行对比,分析信号的变化;
6、回放语音信号,分析滤波前后的语音变化,验证滤波效果
2025/6/14 3:33:47 25KB MATLAB 数字信号 语音信号 窗函数法
1
包括以下方面:1.新建一幅图像,或者打开、保存、关闭和退出等功能。
2.对图像进行复制、粘贴、剪切、全选、取消选择和翻转。
其中翻转包括水平翻转和垂直翻转。
3.过滤图像,包括锐化、浮雕、腐蚀、风化。
4对图像进行滤波处理:包括最小值滤波处理、最大值滤波处理和中值处理。
5.对彩色图像进行变换:包括彩色转灰度、彩色转黑白、平滑处理、霓红处理。
6.软化图像,包括红色、绿色、橙色;
硬化图像,包括红色、绿色、蓝色。
7.对图像进行卷积处理,包括水平增强、垂直增强和双向增强。
8.对图像进行边缘探测,例如右下边缘抽出,拉普拉斯(8邻域)。
9.给图像进行对比度增强,进行FFT分析,以及对两幅图像进行合成。
工具栏中的功能主要体现在工具中,正如平时画图工具的工具一样,可以选择一定的区域,放大图像、画圆、画方,输入文字、剪切一定的区域,简单的渐变等。
2025/6/14 3:05:51 970KB 图像处理 photoshop
1
本文将一种基于平移不变小波分解的新方法引入到像素级多传感器图像融合中。
提出的融合体系结构与“shift-decompose-fuse-shift”技术有关,并且包含许多步骤。
首先,要在水平和垂直方向上移动源图像。
移位后的图像将被转换为小波域,并通过重复“移位-翻译”来获得源图像的分解。
其次,将融合图像的不同子带系数与所提出的融合规则相结合。
最后,融合图像将通过反向平移和移位获得。
实验结果表明,该方法融合了源图像中的有用信息,性能优于离散小波变换(DWT)和平稳小波变换(SWT)。
2025/6/12 20:06:10 640KB image fusion; translation-invariant wavelet;
1
对信号做快速傅里叶变换,然后画出信号的时域图和频谱
2025/6/11 21:29:31 581B FFT 频谱图
1
生理信号中,能够自动的对心电图(Electrocardiograph,ECG)信号进行分析是当前信号处理领域中的研究热点和难点,能够自动的进行心电图信号的分析将会强有力的促进医疗事业的蓬勃发展,同时能够使国民的健康水平有大幅度的提高,对于现代信号处理技术在医疗领域中应用的将会产生重大的突破。
对于心电信号的分析有很广泛的研究内容以及研究方法,其中能够快速准确的定位心电信号中QRS波群和P、T波,是心电图信号分析的一个关键环节,心电信号中往往拥有过多的信号干扰,去除信号的干扰是准确检测各种特征波的前提。
截止到现在为止,当前对于心电信号的滤波方法研究以及对于特征波形的定位中还存在着许多的不足以及亟待改进的地方。
针对当前现状,本文从以下两个方面展开研究,包括“心电信号滤波”以及“QRS波形定位”。
由于心电信号产生的十分微弱,周围环境中掺杂的肌电干扰、基线漂移以及工频干扰都会对心电信号造成影响。
本文设计了针对50Hz工频干扰的滤波器设计。
从实际情况出发来看,设计了基于FIR陷波器和Levkov滤波法相结合的方法来滤除信号中50Hz工频干扰。
实验结果显示,改进后的算法相比较传统的滤波器而言,是一种更为有效ECG信号滤波法。
QRS波形定位:特征波形定位是心电信号分析与诊断的基础,是诊断的入手点。
QRS波群是心电图最主要最突出的波段,是检测其他波形的前提,P波和T波在诊断中也有重要意义。
通过对临床QRS复合波的形态研究,根据小波多分辨率分析的特点和模极大值检测原理,提出一种Marr小波链检测QRS波群的新算法。
变换3种尺度来定位R波,然后对定位到的峰值采样点采取多数表决的方式,最终唯一确定R波位置。
R波确定后再向前、向后搜索Q、S波。
对于P波和T波则增大尺度,应用同样的方法来检测。
2025/6/11 18:08:19 139.6MB ECG 噪声干扰 QRS
1
IHS融合代码,直接可以运行使用,具有较好的融合效果
2025/6/10 6:28:52 751B IHS 融合 MATLAB
1
输入参数是灰度化后的车牌图像,输出参数是校正后的车牌图像和计算出的倾斜角度
2025/6/9 15:15:37 708B radon变换 车牌倾斜校正
1
matlab代码实现傅里叶梅林变换对两幅存在平移,旋转,缩放的图像进行配准
2025/6/9 13:05:29 167KB 傅里叶梅林变 图像配 matla
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡