LabVIEW制造的黑白棋程序,喜欢就下载吧。
2020/3/19 5:24:17 519KB 黑白棋
1
LabVIEW制造的黑白棋程序,喜欢就下载吧。
2020/3/19 5:24:17 519KB 黑白棋
1
实现了人人,人机对战;
具有悔棋,托管,跳出,重开,投诚等功能;
精致的UI设计;
搜索式算法设计;
2016/3/13 15:38:49 3.46MB C/C++ 黑白棋 linux windows
1
实现了人人,人机对战;
具有悔棋,托管,跳出,重开,投诚等功能;
精致的UI设计;
搜索式算法设计;
2021/10/6 11:36:38 3.46MB C/C++ 黑白棋 linux windows
1
•Alpha-Beta剪枝(Alpha-Betapruning)对于一般的最大最小搜索,即使每一步只有很少的下法,搜索的位置也会增长非常快;
在大多数的中局棋形中,每步平均有十个位置可以下棋,于是假设搜索九步(程序术语称为搜索深度为九),就要搜索十亿个位置(十的九次方),极大地限制了电脑的棋力。
于是采用了一个方法,叫“alpha-beta剪枝”,它大为减少了检测的数目,提高电脑搜索的速度。
各种各样的这种算法用于所有的强力Othello程序。
(同样用于其他棋类游戏,如国际象棋和跳棋)。
为了搜索九步,一个好的程序只用搜索十万到一百万个位置,而不是没用前的十亿次。
•估值这是一个程序中最重要的部分,如果这个模块太弱,则就算算法再好也没有用。
我将要叙述三种不同的估值函数范例。
我相信,大多数的Othello程序都可以归结于此。
棋格表:这种算法的意思是,不同的棋格有不同的值,角的值大而角旁边的格子值要小。
忽视对称的话,棋盘上有10个不同的位置,每个格子根据三种可能性赋值:黑棋、白棋和空。
更有经验的逼近是在游戏的不同阶段对格子赋予不同的值。
例如,角在开局阶段和中局开始阶段比终局阶段更重要。
采用这种算法的程序总是很弱(我这样认为),但另一方面,它很容易实现,于是许多程序开始采用这种逼近。
基于举动力的估值:这种更久远的接近有很强的全局观,而不像棋格表那样局部化。
观察表明,许多人类玩者努力获得最大的举动力(可下棋的数目)和潜在举动力(临近对手棋子的空格,见技巧篇)。
如果代码有效率的话,可以很快发现,它们提高棋力很多。
基于模版的估值:正如上面提及的,许多中等力量的程序经常合并一些边角判断的知识,最大举动力和潜在举动力是全局特性,但是他们可以被切割成局部配置,再加在一起。
棋子最少化也是如此。
这导致了以下的概括:在估值函数中仅用局部配置(模版),这通常用单独计算每一行、一列、斜边和角落判断,再加在一起来实现。
估值合并:一般程序的估值基于许多的参数,如举动力、潜在举动力、余裕手、边角判断、稳定子。
但是怎么样将他们合并起来得到一个估值呢?一般采用线性合并。
设a1,a2,a3,a4为参数,则估值s:=n1*a1+n2*a2+n3*a3+n4*a4。
其中n1,n2,n3,n4为常数,术语叫“权重”(weight),它决定了参数的重要性,它们取决于统计值。
2017/8/17 10:01:12 884KB 黑白棋 算法 论文
1
用html+canvas+js写的五子棋游戏,黑白棋可以轮番落子。
文件内包含双人版和人机版,人机版运用到了一些智能算法。
可直接在chrome上运行。
2019/3/4 22:32:42 11KB 五子棋 HTML
1
同窗大一时候的作业,感觉很不错就是算起来有点慢
2022/9/5 22:48:34 36KB 黑白棋 python
1
这是我大学的时候帮学校开发的赴日比赛项目,能赢这个软件的人,目前除了我还么出现.大家可以试一试.过去7年了,我再玩这个程序,感慨颇多.关于C#.NET技术,可以加我
2020/1/4 10:48:49 1.62MB C# 源代码 黑白棋 奥赛罗棋
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡