基于参考的图像超分辨率重建相关工作.doc
2023/8/31 7:51:54 1.14MB 基于参考的超分辨率重建
1
CoreML和Keras实现超分辨率卷积神经网络(SRCNN)
2023/8/30 20:04:38 81KB Python开发-机器学习
1
用卷积神经网络实现彩色图像的超分辨率matlab
2023/8/26 13:53:19 7.39MB matlab
1
迭代反投影法实现程序,可以用于超分辨率复原。
2023/8/24 18:51:25 1KB IBP
1
该程序是一个matlabGUI程序,打开.m文件可以运行GUI后,按照GUI界面降低分辨率,添加库便可以识别,方便大家学习,交流
2023/8/13 21:07:01 10.31MB matlab 人脸识别 超分辨率
1
序列图像的超分辨重建,有几种不同的算法MAP,POCS,conv,还有插值算法。
2023/7/29 12:41:25 3.61MB 序列图像的超分辨重建
1
多图像超分辨率的实现主要就是将具有相似而又不同却又互相补充信息的配准影像融到一起,得到非均匀采样的较高分辨率数据,复原需要亚像素精度的运动矢量场,然而它们之间的运动模型估计精确与否直接影响到重建的效果,因此影像配准和运动模型的估计精度是高分辨率图像重建的关键。
由于实际中不同时刻获得的影像数据间存在较大的变形、缩放、旋转和平移,因此必须对其进行配准,在此基础上进行运动模型估计。
然后通过频率域或空间域的重建处理,生成均匀采样的超分辨率数据
2023/7/10 17:15:09 139KB matlab 图像重建 超分辨率
1
日本开发光晶格钟160亿年才产生1s误差;新型电抽运半导体激光器提高成像质量;纳米光学天线或将取代受激光辐射激光器;科学家实现多自由度量子体系隐形传态;阿拉伯世界开辟阿秒科学前哨;新型超高时空分辨率超分辨成像技术;首个直接兼容硅晶片的锗锡半导体激光器
2023/7/9 8:21:23 2.81MB 论文
1
光学显微镜的出现为细胞等微观结构的研究打开了新的大门,然而衍射极限的限制使得更加精细的结构难以探测。
近年来,一些充满创造性的方法突破了衍射极限,达到纳米级分辨率。
氮-空位(NV)色心是金刚石中一种常见的发光缺陷,由于其具有明亮而稳定的发光性质和较长的电子自旋相干时间而被广泛应用于量子计算与量子测量中;
同时,NV色心在超分辨成像技术中也发挥着巨大作用,通过与各种超分辨成像显微镜的结合,实现了对NV色心的纳米级分辨率成像,而且进一步实现高空间分辨率的量子传感。
本文简单介绍了NV色心的结构与性质,以及各类成像技术的基本原理;
对NV色心与超分辨成像结合的各项技术实验成果进行了归纳与比较,并对其应用进行了总结与展望。
2023/6/6 23:54:40 10.87MB 成像系统 超分辨成 衍射极限 NV色心
1
本文首先回顾了空间谱估计技术的发展过程及现状;
比较详细的介绍了空间谱估计基础;
分析了DOA估计超分辨算法中的MUSIC算法和ESPRIT算法这两个经典代表,并通过Matlab仿真实验,对MUSIC算法与ESPRIT算法进行了对比功能分析,得出了算法的优缺点。
2023/2/21 1:12:06 347KB 信号处理
1
共 51 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡