D2D信道分配仿真,算法有启发式算法,最优算法等,仿真介入D2D对随干扰门限的变化等。
2023/11/22 12:41:18 19KB D2D
1
LTE资源分配,小区间干扰协调的Matlab源码,使用了SCME信道模型,利用此模型建立LTE资源分配的仿真环境,是项目中写出来的代码,很值得一看,参考
2023/10/4 8:23:05 1.68MB LTE SCME 资源分配
1
OFDMA系统资源分配算法研究介绍了资源分配方法及其原理。
2023/9/15 22:17:40 3.29MB 资源分配
1
操作系统课程设计任务书银行家算法1)了解多道程序系统中,多个进程并发执行的资源分配。
2)掌握银行家算法,了解资源在进程并发执行中的资源分配情况。
3)掌握预防死锁的方法,系统安全状态的基本概念。
设计一个n个并发进程共享m个系统资源的程序以实现银行家算法。
要求:1) 简单的选择界面;
2) 能显示当前系统资源的占用和剩余情况。
3) 为进程分配资源,如果进程要求的资源大于系统剩余的资源,不与分配并且提示分配不成功;
4) 撤销作业,释放资源。
编写和调试一个系统动态分配资源的简单模拟程序,观察死锁产生的条件,并采用适当的算法,有效地防止和避免死锁的发生。
1
用于绿色IoT的全双工环境后向散射通信网络的最佳资源分配
2023/8/22 4:08:12 484KB 研究论文
1
仿真模拟银行家算法对死锁的避免。
对于进程死锁的避免问题,分为两种状态:安全状态和非安全状态。
在避免死锁的方法中,允许进程动态地申请资源分配之前,应先计算此次资源分配的安全性。
若此次分配不会导致系统进入不安全状态,则将资源分配给进程;
否则,令进程等待。
所谓安全状态是指系统能按某种进程顺序,来为每个进程pi分配所需的资源,直至满足每个进程对资源的最大需求,使每个进程都可顺利地完成。
如果系统无法找到这样一个序列,则系统处于不安全状态。
只要系统处于安全状态,系统便可避免进入死锁状态。
因此避免死锁的实质在于:系统在进行资源分配时,如何使系统不进入不安全状态。
银行家算法就是一种最有代表性的避免死锁的算法。
2023/8/7 15:21:24 4.83MB 银行家算法 java 界面 操作系统
1
LWA(LTEWLANAggregation)是为了减轻LTE(LongTermEvolution)网络负担和提高系统容量而提出来的融合无线局域网(WirelessLocalAreaNetworks,WLAN)网络对业务进行分流的一项重要技术。
首先对LWA进行了概述,随后分析LWA部署场景以及融合架构,同时总结现有的分流架构,然后对LWA系统中的技术难题和关键技术进行了阐述,并分析其中最为核心的接入点控制技术和资源分配技术,最后对LWA系统下一步研究方向进行了展望。
2023/8/7 2:19:34 637KB 论文研究
1
北京XXX公司因为市场规模扩张,网络化,线上办公等,需要对原有的crm系统进行升级改进。
建立一个,数据共享,统一规划,统一管理,自动办公的线上系统平台。
最终要实现一种客户线上自助业务查询办理,客户业务推送,外延业务拓展,一站式服务。
对内,要实现公司内部信息共享,公司内部资源分配,公司考核校级评定,公司内部办公管理的线上服务平台。
本次项目只是能根据原有CRM项目和公司现在的业务需求重新设计开发,不承担原CRM到新CRM数据迁移工作。
2023/8/4 8:07:30 19MB 纽乐康后台
1
具有网络编码和不完美CSI的双向解码转发OFDM中继系统的鲁棒资源分配
2023/7/28 10:05:39 389KB 研究论文
1
【实验目的】1.理解死锁的概念;
2.用高级语言编写和调试一个银行家算法程序,以加深对死锁的理解。
【实验准备】1.产生死锁的原因竞争资源引起的死锁进程推进顺序不当引起死锁2.产生死锁的必要条件互斥条件请求和保持条件不剥夺条件环路等待条件3.处理死锁的基本方法预防死锁避免死锁检测死锁解除死锁【实验内容】1.实验原理银行家算法是从当前状态出发,逐个按安全序列检查各客户中谁能完成其工作,然后假定其完成工作且归还全部贷款,再进而检查下一个能完成工作的客户。
如果所有客户都能完成工作,则找到一个安全序列,银行家才是安全的。
与预防死锁的几种方法相比较,限制条件少,资源利用程度提高了。
缺点:该算法要求客户数保持固定不变,这在多道程序系统中是难以做到的;
该算法保证所有客户在有限的时间内得到满足,但实时客户要求快速响应,所以要考虑这个因素;
由于要寻找一个安全序列,实际上增加了系统的开销.Bankeralgorithm最重要的一点是:保证操作系统的安全状态!这也是操作系统判断是否分配给一个进程资源的标准!那什么是安全状态?举个小例子,进程P需要申请8个资源(假设都是一样的),已经申请了5个资源,还差3个资源。
若这个时候操作系统还剩下2个资源。
很显然,这个时候操作系统无论如何都不能再分配资源给进程P了,因为即使全部给了他也不够,还很可能会造成死锁。
若这个时候操作系统还有3个资源,无论P这一次申请几个资源,操作系统都可以满足他,因为操作系统可以保证P不死锁,只要他不把剩余的资源分配给别人,进程P就一定能顺利完成任务。
2.实验题目设计五个进程{P0,P1,P2,P3,P4}共享三类资源{A,B,C}的系统,{A,B,C}的资源数量分别为10,5,7。
进程可动态地申请资源和释放资源,系统按各进程的申请动态地分配资源。
要求程序具有显示和打印各进程的某一时刻的资源分配表和安全序列;
显示和打印各进程依次要求申请的资源号以及为某进程分配资源后的有关资源数据。
3.算法描述我们引入了两个向量:Resourse(资源总量)、Available(剩余资源量)以及两个矩阵:Claim(每个进程的最大需求量)、Allocation(已为每个进程分配的数量)。
它们共同构成了任一时刻系统对资源的分配状态。
向量模型:R1R2R3矩阵模型:R1R2P1P2P3这里,我们设置另外一个矩阵:各个进程尚需资源量(Need),可以看出Need=Claim–Allocation(每个进程的最大需求量-剩余资源量)因此,我们可以这样描述银行家算法:设Request[i]是进程Pi的请求向量。
如果Request[i,j]=k,表示Pi需k个Rj类资源。
当Pi发出资源请求后,系统按下述步骤进行检查:(1)if(Request[i]<=Need[i])goto(2);elseerror(“overrequest”);(2)if(Request[i]<=Available[i])goto(3);elsewait();(3)系统试探性把要求资源分给Pi(类似回溯算法)。
并根据分配修改下面数据结构中的值。
剩余资源量:Available[i]=Available[i]–Request[i];
已为每个进程分配的数量:Allocation[i]=Allocation[i]+Request[i];
各个进程尚需资源量:Need[i]=Need[i]-Request[i];(4)系统执行安全性检查,检查此次资源分配后,系统是否处于安全状态。
若安全,才正式将资源分配给进程以完成此次分配;
若不安全,试探方案作废,恢复原资源分配表,让进程Pi等待。
系统所执行的安全性检查算法可描述如下:设置两个向量:Free、Finish工作向量Free是一个横向量,表示系统可提供给进程继续运行所需要的各类资源数目,它含有的元素个数等于资源数。
执行安全算法开始时,Free=Available.标记向量Finish是一个纵向量,表示进程在此次检查中中是否被满足,使之运行完成,开始时对当前未满足的进程做Finish[i]=false;
当有足够资源分配给进程(Need[i]<=Free)时,Finish[i]=true,Pi完成,并释放资源。
(1)从进程集中找一个能满足下述条件的进程Pi①Finish[i]==false(未定)②Need[i]<=Free(资源够分)(2)当Pi获得资源后,认为它完成,回收资源:Free=Free
2023/7/22 22:21:56 17KB 银行家算法 操作系统
1
共 52 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡