基于逐次优化法的水库优化调度程序,可以克服维数灾,快速收敛,本文已认真标注代码含义,解释清楚。
2024/3/12 8:58:33 7KB POA
1
函数逼近与曲线拟合,拟合的结果与拉格朗日插值及样条插值的结果比较复化梯形方法;
2.复化辛甫森方法;
3.复化高斯方法,求解第二类Fredholm积分方程高维积分数值计算的蒙特卡罗方法,分别用积分和测度两种不同角度,通过蒙特卡罗方法求冰激凌的体积病态的线性方程组的求解,选择病态问题的维数为6,分别用Gauss消去法、J迭代法、GS迭代法和SOR迭代法求解方程组,及其比较
1
在推荐算法中,样本空间构成的数据矩阵一般为稀松矩阵,且维数一般较多,可通过求取特征值或者奇异值的方式获得样本矩阵的特征矩阵,从而降低维数。
主成分分析法在矩阵降维中有很好的应用。
本文通过特征值分解、奇异值分解、PCA等操作可以获得降维后的矩阵,通过使用不同的相似度判别法获得最好的相似度,可以使得推荐算法具有很好的效果。
2024/2/3 9:17:28 360KB 推荐系统 主成分分析
1
计算分形的一个软件,盒维数,多重分形谱等,用过,感觉不错。
2024/1/26 15:24:41 6.01MB fraclab
1
相空间重构分形维数主要用于故障诊断模式识别等领域
2023/12/28 4:36:58 571KB 相空间重构 分形维数
1
本书主要是为了帮助那些在非数学领域工作的专业人员理解小波这一非常数学化的高深主题,并为在更严格的数学层面上进一步学习小波奠定基础。
在这里,包含了详细的讨论与精心设计的实例、图表以及练习,为读者理解基本概念提供了循序渐进的指导。
这些基本概念包括向量空间、度量。
范数、内积,基、维数、双正交性和矩阵等,甚至还包括许多新的小波应用,如图像压缩、湍流以及模式识别!本书是一本通过大量实例讲述小波与经典信号处理之间关系的入门书籍,主要内容包括:函数与变换、采样定理、多采样率处理、快速傅里叶变换、小波变换、正交镜像滤波器、实用小波和滤波器等.除此之外,本书还包括小波的一些典型应用,如图像压缩、湍流、模式识别等。
2023/12/27 3:12:35 20.91MB 数学,小波
1
利用RBF网络(隐含层神经单元个数和学习率等参数可在内部修改,不作为输入参数)学习和训练,并对输入的测试样本做出响应。
输入和输出维数可以多维。
实际运行,逼近y=sin(t)函数效果不错。
2023/12/8 6:14:13 2KB RBF;MATLAB
1
互信息法求最小嵌入维数,网上下载的,直接输入数据可用
2023/12/5 9:23:46 4KB 分形 最小嵌入维数计算
1
利用RBF网络(隐含层神经单元个数和学习率等参数可在内部修改,不作为输入参数)学习和训练,并对输入的测试样本做出响应。
输入和输出维数可以多维。
实际运行,逼近y=sin(t)函数效果不错。
2023/11/26 7:05:55 2KB RBF;MATLAB
1
Matlab关于人工神经网络在预测中的应用的论文二-人工神经网络模型在研究生招生数量预测中的应用.pdf四、灰色人工神经网络人口总量预测模型及应用摘要:针对单一指标进行人口总量预测精度不高的问题,基于灰色系统理论和人工神经网络理论,用1990年至2004年中国人口总量序列建立并训练一个多指标的灰色人工神经网络人口总量预测模型。
对2005年至2007年的人口总量进行检验性预测,结果表明灰色人工神经网络模型大大提高了预测精度。
关键词:人口总量;
灰色系统;
BP人工神经网络;
灰色人工神经网络模型引言:本文从影响人口增长的诸多因素中筛选出6个主要因素,结合灰色系统思想与神经网络的优点建立了一个灰色人工神经网络(GreyArtificialNeuralNetwork,GANN)预测模型,对每一个指标分别用GM(1,1)模型选择最佳的维数进行预测,再利用神经网络非线性映射的特性把这6个指标进行非线性组合得到人口总量的预测结果。
该模型充分利用灰色系统弱化数据的随机性及其动态性和神经网络非线性映射的特性,发挥两者的优势,从而进一步提高预测精度。
中间内容省略~结语:由于传统遗传算法聚类算法本身的优点:在解决聚类问题上速度快、准确率高,加上免疫网络分类算法可以进行非监督学习,确定聚类数及聚类点,在实际聚类应用中有更广阔的适用性;
在这种独特的聚类算法的基础上,结合粗糙集理论构建了一种图像分割算法;
同时,通过实验证明该方法不但比传统的FCM算法聚类速度快,分割效果好,而且比文献[2]的分割准确度还要高。
由于该方法有在聚类上的无教师监督的独特优点,并且通过对人脑MR图聚类和分割的两个实验,证明了该分割算法比以往分割算法在具体应用上都有一定的提高。
灰色人工神经网络人口总量预测模型及应用.pdf五、人工神经网络模型在研究生招生数量预测中的应用摘要:研究生招生数量的确定涉国家政策、社会就业、人才需求、专业分布与需求等诸多因素,这些影响因素往往无法量化,而且各个影响因素之间关系错综复杂,简单的线性模型预测未来招生数量往往难以实现。
尝试采用人工神经网络模型,针对历年招生数量原始数据信息零散、隐含影响因素过多、诸多影响因素难以确定性描述等问题,通过对黑龙江省历年研究生招生数量进行系统分析,建立了人工神经网络预测模型,并对未来3年的招生数量进行了预测,预测结果较好,为该方面研究提供了新的研究思路与研究方法。
关键词:黑龙江省;研究生招生;预测;人工神经网络模型引言:关于研究生招生数量的确定,涉及诸多因素,例如国家政策、社会就业、人才需求、专业分布与需求等等。
这些影响因素往往无法量化,很难找出定量化的因素来进行分析,而这些因素又确确实实在很大程度上影响着研究生招生的数量及其分布。
以往分析预测方法主要是确定性数学模型和随机统计方法,例如有限单元法、有限差分法、灰色理论建模、回归分析、谐波分析、时间序列分析、概率统计法等。
这些方法多以线性理论为基础,考虑问题偏于简单化,导致预测精度不高。
本论文结合黑龙江省1981年—2004年的研究生招生规模,针对历年招生数量原始数据信息零散、隐含影响因素过多、诸多影响因素难以确定性描述等问题,探讨应用一种改进的BP网络模型对未来3年黑龙江省研究生招生规模进行预测,为该方面研究提供新的研究思路与研究模式,并渴望为用人单位、科研院校提供制定长远发展与建设规划提供参考。
中间内容省略~结语:采用人工神经网络模型可以有效的处理黑龙江省研究生数量中涉及的人为、政策等随机因素、难以量化等因素的干扰,拟合精度非常高,预测精度也相对较高,为未来研究生招生规模提供科学理论依据,为该方面研究提供新的研究方法与研究思路。
人工神经网络模型在研究生招生数量预测中的应用.pdf六、基于RBF人工神经网络模型预测棉花耗水量摘要:利用MATLAB工具箱,以平均气温、日照时数、平均风速为输入变量,建立了新疆石河子地区棉花耗水量的RBF人工神经网络预测系统,通过2008年实测数据的检验表明,此预测系统网络模型的绝对误差最大为0.0967mm/d、最小为0.0025mm/d、平均为0.0419mm/d,相对误差最大为2.6491%、最小为0.0341%、平均为0.8780%。
可见,网络模型预测的准确度较高,较以往的线性模型更合理,并且此网络训练花费的时间仅需0.0780s,具有一定的实用价值。
关键词:预测;
人工神经网络;
径向基函数;
棉花耗水量引言:计算机人工神经网络是20世纪8
2023/11/14 19:27:42 352KB matlab
1
共 89 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡