用C++写的十字链表稀疏矩阵报告和程序一起发了
2023/10/27 6:44:02 273KB 数据结构 十字链表
1
设计一个稀疏矩阵运算器。
实现两个矩阵相加、相减和相乘等的运算。
矩阵的输入输出均按通常的阵列形式
2023/10/16 12:37:35 7KB 稀疏矩阵.cpp
1
//稀疏矩阵的三元组顺序表存储表示#defineMAXSIZE100//非零元个数最大为100typedefstruct{inti,j;//非零元的行下标和列下标ElemTypee;//非零元}Triple;typedefstruct{Tripledata[MAXSIZE+1];//非零元三元组表,data[0]不用intmu,nu,tu;//矩阵的总行数,总列数,非零元总个数}TSMatrix;
2023/9/23 12:34:22 3KB 数据结构 稀疏矩阵
1
用CUDA写了个简单的求解稀疏矩阵的例子,使用共轭梯度法迭代。
矩阵的计算都是在GPU上运转。
稀疏矩阵采用CSR格式表示。
2023/2/22 22:05:26 13.8MB CUDA
1
OpenCL领域公认的权威著作,由OpenCL核心设计人员亲自执笔,不仅全面而深刻地解读了OpenCL规范和编程模型,而且通过大量案例和代码演示了基于OpenCL编写并行程序和实现各种并行算法的原理、方法、流程和最佳实践,以及如何对OpenCL进行功能优化,如何对硬件进行探测和调整。
,本书分为两大部分:第一部分(1~13章),从介绍OpenCL的核心思想和编写OpenCL程序的基础知识开始,对枯燥的OpenCL规范进行了深刻而系统的解读,旨在帮助读者全面、正确地理解OpenCL规范及其编程模型;
第二部分(14~22章),提供了一系列经典的案例,如图像直方图、Sobel边界检测过滤器、并行实现Dijkstra单源最短路径图算法、BulletPhysicsSDK中的布模拟、用快速傅里叶变换模拟海洋、光流、OpenCL与PyOpenCL结合使用,使用OpenCL完成矩阵相乘与稀疏矩阵矢量乘法等,目的是让读者通过案例熟练掌握编写复杂并行程序的方法和技巧。
本书的附录收录了OpenCL规范定义的大量函数、命名常量和类型,可供程序员开发时查阅。
2023/2/19 10:16:10 49.79MB OpenCL
1
已知稀疏矩阵用三元组表现编写C=A*B的算法。
2023/2/13 3:39:55 2KB 数据结构 三元组 稀疏矩阵
1
文本挖掘tmSVM开源项目集成libSVM和liblinear包含Python和Java两种版本带PDF源码参考文档简介文本挖掘无论在学术界还是在工业界都有很广泛的应用场景。
而文本分类是文本挖掘中一个非常重要的手段与技术。
现有的分类技术都已经非常成熟,SVM、KNN、DecisionTree、AN、NB在不同的应用中都展示出较好的效果,前人也在将这些分类算法应用于文本分类中做出许多出色的工作。
但在实际的商业应用中,仍然有很多问题没有很好的解决,比如文本分类中的高维性和稀疏性、类别的不平衡、小样本的训练、Unlabeled样本的有效利用、如何选择最佳的训练样本等。
这些问题都将导致curveofdimension、过拟合等问题。
这个开源系统的目的是集众人智慧,将文本挖掘、文本分类前沿领域效果非常好的算法实现并有效组织,形成一条完整系统将文本挖掘尤其是文本分类的过程自动化。
该系统提供了Python和Java两种版本。
主要特征该系统在封装libsvm、liblinear的基础上,又增加了特征选择、LSA特征抽取、SVM模型参数选择、libsvm格式转化模块以及一些实用的工具。
其主要特征如下:封装并完全兼容*libsvm、liblinear。
基于Chi*的featureselection见feature_selection基于LatentSemanticAnalysis的featureextraction见feature_extraction支持Binary,Tf,log(tf),Tf*Idf,tf*rf,tf*chi等多种特征权重见feature_weight文本特征向量的归一化见Normalization利用交叉验证对SVM模型参数自动选择。
见SVM_model_selection支持macro-average、micro-average、F-measure、Recall、Precision、Accuracy等多种评价指标见evaluation_measure支持多个SVM模型同时进行模型预测采用python的csc_matrix支持存储大稀疏矩阵。
引入第三方分词工具自动进行分词将文本直接转化为libsvm、liblinear所支持的格式。
使用该系统可以做什么对文本自动做SVM模型的训练。
包括Libsvm、Liblinear包的选择,分词,词典生成,特征选择,SVM参数的选优,SVM模型的训练等都可以一步完成。
利用生成的模型对未知文本做预测。
并返回预测的标签以及该类的隶属度分数。
可自动识别libsvm和liblinear的模型。
自动分析预测结果,评判模型效果。
计算预测结果的F值、召回率、准确率、Macro,Micro等指标,并会计算特定阈值、以及指定区间所有阈值下的相应指标。
分词。
对文本利用mmseg算法对文本进行分词。
特征选择。
对文本进行特征选择,选择最具代表性的词。
SVM参数的选择。
利用交叉验证方法对SVM模型的参数进行识别,可以指定搜索范围,大于大数据,会自动选择子集做粗粒度的搜索,然后再用全量数据做细粒度的搜索,直到找到最优的参数。
对libsvm会选择c,g(gamma),对与liblinear会选择c。
对文本直接生成libsvm、liblinear的输入格式。
libsvm、liblinear以及其他诸如weka等数据挖掘软件都要求数据是具有向量格式,使用该系统可以生成这种格式:labelindex:valueSVM模型训练。
利用libsvm、liblinear对模型进行训练。
利用LSA对进行FeatureExtraction*,从而提高分类效果。
开始使用QuickStart里面提供了方便的使用指导如何使用该系统可以在命令行(Linux或cmd中)中直接使用,也可以在程序通过直接调用源程序使用。
在程序中使用。
#将TMSVM系统的路径加入到Python搜索路径中importsyssys.path.insert(0,yourPath+"\tmsvm\src")importtms#对data文件夹下的binary_seged.train文件进行训练。
tms.tms_train(“../data/binary_seged.train”)#利用已经训练好的模型,对对data文件夹下的binary_seged.test文件预测tms.tms_predict(“../data/binary_seged.test”,”../model/tms.config”)#对预测的结果进行分析,评判模型的效果tms.tms_analysis(“../tms.result”)在命令行中调用#对data文件夹下的binary_seged.train文件进行训练。
$pythonauto_train.py[options]../data/binary_seged.train#利用已经训练好的模型,对对data文件夹下的binary_seged.test文件预测pythonpredict.py../data/binary_seged.train../model/tms.config#对预测的结果进行分析,评判模型的效果$pythonresult_anlaysis.py../tms.result上面的调用方式都是使用系统中默认的参数,更具体、灵活的参数见程序调用接口输入格式labelvalue1[value2]其中label是定义的类标签,如果是binaryclassification,建议positive样本为1,negative样本为-1。
如果为multi-classification。
label可以是任意的整数。
其中value为文本内容。
label和value以及value1和value2之间需要用特殊字符进行分割,如”\t”模型输出模型结果会放在指定保存路径下的“model”文件夹中,里面有3个文件,默认情况下为dic.key、tms.model和tms.config。
其中dic.key为特征选择后的词典;
tms.model为训练好的SVM分类模型;tms.config为模型的配置文件,里面记录了模型训练时使用的参数。
临时文件会放在“temp”文件夹中。
里面有两个文件:tms.param和tms.train。
其中tms.param为SVM模型参数选择时所实验的参数。
tms.train是供libsvm和liblinear训练器所使用的输入格式。
源程序说明src:即该系统的源代码,提供了5个可以在Linux下可以直接调用的程序:auto_train.py、train.py、predict.py为在Linux下通过命令行调用的接口。
tms.py为在程序中调用的主文件,直接通过importtms即可调用系统的所有函数。
其他文件为程序中实现各个功能的文件。
lsa_src:LSA模型的源程序。
dependence:系统所依赖的一些包。
包括libsvm、liblinear、Pymmseg在Linux32位和64位以及windows下的支持包(dll,so文件)。
tools:提供的一些有用的工具,包括result_analysis.py等。
java:java版本的模型预测程序,项目重要更新日志2012/09/21针对linux下的bug进行修正。
重新生成win和linux版本的。
2012/03/08增加stem模块,并修正了几个Bug。
2011/11/22tmsvm正式发布。
联系方式邮箱:zhzhl202@163.comThanks本系统引用了libsvm、liblinear的包,非常感谢Chih-JenLin写出这么优秀的软件。
本系统还引用了Pymmseg,非常感谢pluskid能为mmseg写出Python下可以直接使用的程序从最初的想法萌生到第一版上线,中间试验了很多算法,最终因为效果不好删掉了很多代码,在这期间得到了许多人的帮助,非常感谢杨铮、江洋、敏知、施平等人的悉心指导。
特别感谢丽红一直以来的默默支持。
2023/2/8 18:37:14 3.39MB 文本挖掘 tmSVM libSVM 支持向量机
1
deepfmCTR预估处理高维稀疏矩阵训练深度网络带来的问题
2017/7/23 9:43:20 10KB 机器学习
1
网络上的Matrix运算库繁多,但有很多功能不够完整,或缺少正文,给使用者带来不少麻烦。
该函数库是我搜集到的比较全面的矩阵运算库,而且附带引自清华大学bbs上的函数功能正文,使用方便。
内容包括:Matrix.cpp执行文件Matrix.h头文件【matrix头文件声明正文】.txt函数正文说明文件亲测vs2010下可用如果涉及到大型稀疏矩阵的运算可以参照我的另一个suitesparse资源
2018/1/9 16:05:26 16KB 矩阵运算 C++开发 Matrix
1
稀疏矩阵的十字链表表示方式:矩阵加减乘法运算、矩阵转置运算、矩阵项的插入、矩阵行列链表的排序
2018/6/16 10:53:12 206KB C语言 稀疏矩阵 十字链表
1
共 41 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡