matlab预测方法讲义,内含插值拟合,灰色预测,回归分析,马尔科夫预测,神经网络预测,时间序列等多种资源。
2023/11/30 2:10:01 68.25MB matlab 预测方法 数学建模
1
Matlab关于人工神经网络在预测中的应用的论文二-人工神经网络模型在研究生招生数量预测中的应用.pdf四、灰色人工神经网络人口总量预测模型及应用摘要:针对单一指标进行人口总量预测精度不高的问题,基于灰色系统理论和人工神经网络理论,用1990年至2004年中国人口总量序列建立并训练一个多指标的灰色人工神经网络人口总量预测模型。
对2005年至2007年的人口总量进行检验性预测,结果表明灰色人工神经网络模型大大提高了预测精度。
关键词:人口总量;
灰色系统;
BP人工神经网络;
灰色人工神经网络模型引言:本文从影响人口增长的诸多因素中筛选出6个主要因素,结合灰色系统思想与神经网络的优点建立了一个灰色人工神经网络(GreyArtificialNeuralNetwork,GANN)预测模型,对每一个指标分别用GM(1,1)模型选择最佳的维数进行预测,再利用神经网络非线性映射的特性把这6个指标进行非线性组合得到人口总量的预测结果。
该模型充分利用灰色系统弱化数据的随机性及其动态性和神经网络非线性映射的特性,发挥两者的优势,从而进一步提高预测精度。
中间内容省略~结语:由于传统遗传算法聚类算法本身的优点:在解决聚类问题上速度快、准确率高,加上免疫网络分类算法可以进行非监督学习,确定聚类数及聚类点,在实际聚类应用中有更广阔的适用性;
在这种独特的聚类算法的基础上,结合粗糙集理论构建了一种图像分割算法;
同时,通过实验证明该方法不但比传统的FCM算法聚类速度快,分割效果好,而且比文献[2]的分割准确度还要高。
由于该方法有在聚类上的无教师监督的独特优点,并且通过对人脑MR图聚类和分割的两个实验,证明了该分割算法比以往分割算法在具体应用上都有一定的提高。
灰色人工神经网络人口总量预测模型及应用.pdf五、人工神经网络模型在研究生招生数量预测中的应用摘要:研究生招生数量的确定涉国家政策、社会就业、人才需求、专业分布与需求等诸多因素,这些影响因素往往无法量化,而且各个影响因素之间关系错综复杂,简单的线性模型预测未来招生数量往往难以实现。
尝试采用人工神经网络模型,针对历年招生数量原始数据信息零散、隐含影响因素过多、诸多影响因素难以确定性描述等问题,通过对黑龙江省历年研究生招生数量进行系统分析,建立了人工神经网络预测模型,并对未来3年的招生数量进行了预测,预测结果较好,为该方面研究提供了新的研究思路与研究方法。
关键词:黑龙江省;研究生招生;预测;人工神经网络模型引言:关于研究生招生数量的确定,涉及诸多因素,例如国家政策、社会就业、人才需求、专业分布与需求等等。
这些影响因素往往无法量化,很难找出定量化的因素来进行分析,而这些因素又确确实实在很大程度上影响着研究生招生的数量及其分布。
以往分析预测方法主要是确定性数学模型和随机统计方法,例如有限单元法、有限差分法、灰色理论建模、回归分析、谐波分析、时间序列分析、概率统计法等。
这些方法多以线性理论为基础,考虑问题偏于简单化,导致预测精度不高。
本论文结合黑龙江省1981年—2004年的研究生招生规模,针对历年招生数量原始数据信息零散、隐含影响因素过多、诸多影响因素难以确定性描述等问题,探讨应用一种改进的BP网络模型对未来3年黑龙江省研究生招生规模进行预测,为该方面研究提供新的研究思路与研究模式,并渴望为用人单位、科研院校提供制定长远发展与建设规划提供参考。
中间内容省略~结语:采用人工神经网络模型可以有效的处理黑龙江省研究生数量中涉及的人为、政策等随机因素、难以量化等因素的干扰,拟合精度非常高,预测精度也相对较高,为未来研究生招生规模提供科学理论依据,为该方面研究提供新的研究方法与研究思路。
人工神经网络模型在研究生招生数量预测中的应用.pdf六、基于RBF人工神经网络模型预测棉花耗水量摘要:利用MATLAB工具箱,以平均气温、日照时数、平均风速为输入变量,建立了新疆石河子地区棉花耗水量的RBF人工神经网络预测系统,通过2008年实测数据的检验表明,此预测系统网络模型的绝对误差最大为0.0967mm/d、最小为0.0025mm/d、平均为0.0419mm/d,相对误差最大为2.6491%、最小为0.0341%、平均为0.8780%。
可见,网络模型预测的准确度较高,较以往的线性模型更合理,并且此网络训练花费的时间仅需0.0780s,具有一定的实用价值。
关键词:预测;
人工神经网络;
径向基函数;
棉花耗水量引言:计算机人工神经网络是20世纪8
2023/11/14 19:27:42 352KB matlab
1
(1)时序预测(2)绘制预测值和真实值对比曲线(3)绘制真实值和预测值的误差对比曲线(4)可以通过更改参数显示多个预测值
2023/11/9 9:42:16 5KB 神经网络预测
1
基于BP神经网络,测试集辛烷值含量预测结果对比
2023/10/23 10:28:14 169KB BP神经网络
1
基于Python完成张军版计算智能相关算法,其中包含蚁群算法,遗传算法,神经网络预测数据,粒子群算法和紧急搜索
2023/9/30 19:32:16 198KB python
1
第一篇MATLAB入门篇 第1章MATLAB概述  1.1MATLAB的产生与发展  1.2MATLAB的优势与特点  1.3MATLAB系统的构成  1.4MATLAB桌面操作环境   1.4.1MATLAB启动和退出   1.4.2MATLAB主菜单及功能   1.4.3MATLAB命令窗口   1.4.4MATLAB工作空间   1.4.5M文件编辑/调试器   1.4.6图形窗口   1.4.7MATLAB文件管理   1.4.8MATLAB帮助  1.5MATLAB的工具箱  1.6小结 第2章MATLAB计算基础  2.1MATLAB数值类型  2.2关系运算和逻辑运算  2.3矩阵及其运算   2.3.1矩阵的创建   2.3.2矩阵的运算  2.4复数及其运算   2.4.1复数表示   2.4.2复数绘图   2.4.3复数操作函数  2.5符号运算   2.5.1符号运算概述   2.5.2常用的符号运算  2.6小结 第3章MATLAB绘图入门  3.1MATLAB中绘图的基本步骤 3.2在工作空间直接绘图  3.3利用绘图函数绘图   3.3.1二维图形   3.3.2三维图形  3.4图形的修饰  3.5小结 第4章MATLAB编程入门  4.1MATLAB编程概述  4.2MATLAB程序设计原则  4.3M文件  4.4MATLAB程序流程控制  4.5MATLAB中的函数及调用   4.5.1函数类型   4.5.2函数参数传递  4.6函数句柄  4.7MATLAB程序调试   4.7.1常见程序错误   4.7.2调试方法   4.7.3调试工具   4.7.4M文件分析工具   4.7.5Profiler分析工具  4.8MATLAB程序设计技巧   4.8.1嵌套计算   4.8.2循环计算   4.8.3使用例外处理机制   4.8.4使用全局变量   4.8.5通过varargin传递参数  4.9小结 第5章Simulink仿真入门  5.1Simulink仿真概述   5.1.1Simulink的启动与退出   5.1.2Simulink模块库  5.2Simulink仿真模型及仿真过程  5.3Simulink模块的处理   5.3.1Simulink模块参数设置   5.3.2Simulink模块基本操作   5.3.3Simulink模块连接  5.4Simulink仿真设置   5.4.1仿真器参数设置   5.4.2工作空间数据导入/导出   5.4.2设置  5.5Simulink仿真举例  5.6小结第二篇神经网络提高篇 第6章MATLAB神经网络工具箱概述 第7章MATLAB神经网络GUI工具 第8章感知器神经网络 第9章线性神经网络 第10章BP神经网络 第11章径向基神经网络 第12章自组织神经网络 第13章反馈神经网络第三篇神经网络综合实战篇 第14章神经网络优化 第15章神经网络控制 第16章神经网络故障诊断 第17章神经网络预测 第18章Simulink中的神经网络设计 第19章自定义神经网络附录A工具箱函数列表参考文献
2023/9/22 10:10:45 92.68MB 神经网络
1
本代码采用Matlab平台,使用神经网络预测负荷,并提供澳大利亚某地区负荷数据本代码采用Matlab平台,使用神经网络预测负荷,并提供澳大利亚某地区负荷数据本代码采用Matlab平台,使用神经网络预测负荷,并提供澳大利亚某地区负荷数据
2023/9/20 7:03:06 13.74MB nn load predict
1
可以预测一二维数据!基于小波变换的时间序列预测!思路将数据序列进行小波分解,每一层分解的结果是上次分解得到的低频信号再分解成低频和高频两个部分。
2023/9/19 7:24:30 6KB matlab小波预测
1
使用RBF预测很好用的程序移植性强使用方便
2023/9/1 23:21:24 1KB RBF 神经网络 预测
1
利用径向基函数神经网络进行数据预测,很好的代码,推荐使用
2023/8/4 21:56:40 7KB MATLAB
1
共 47 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡