线性表某软件公司大约有30名员工,每名员工有姓名、工号、职务等属性,每年都有员工离职和入职。
把所有员工按照顺序存储结构建立一个线性表,建立离职和入职函数,当有员工离职或入职时,修改线性表,并且打印最新的员工名单。
约瑟夫(Josephus)环问题:编号为1,2,3,…,n的n个人按顺时针方向围坐一圈,每人持有一个密码(正整数)。
一开始任选一个正整数作为报数的上限值m,从第一个人开始按顺时针方向自1开始顺序报数,报到m时停止。
报m的人出列,将他的密码作为新的m值,从他在顺时针方向上的下一人开始重新从1报数,如此下去,直到所有人全部出列为止。
建立n个人的单循环链表存储结构,运行结束后,输出依次出队的人的序号。
栈和队列某商场有一个100个车位的停车场,当车位未满时,等待的车辆可以进入并计时;
当车位已满时,必须有车辆离开,等待的车辆才能进入;
当车辆离开时计算停留的的时间,并且按照每小时1元收费。
汽车的输入信息格式可以是(进入/离开,车牌号,进入/离开时间),要求可以随时显示停车场内的车辆信息以及收费历史记录。
某银行营业厅共有6个营业窗口,设有排队系统广播叫号,该银行的业务分为公积金、银行卡、理财卡等三种。
公积金业务指定1号窗口,银行卡业务指定2、3、4号窗口,理财卡业务指定5、6号窗口。
但如果5、6号窗口全忙,而2、3、4号窗口有空闲时,理财卡业务也可以在空闲的2、3、4号窗口之一办理。
客户领号、业务完成可以作为输入信息,要求可以随时显示6个营业窗口的状态。
5、4阶斐波那契序列如下:f0=f1=f2=0,f3=1,…,fi=fi-1+fi-2+fi-3+fi-4,利用容量为k=4的循环队列,构造序列的前n+1项(f0,f1,f2,…fn),要求满足fn≤200而fn+1>200。
6、八皇后问题:设8皇后问题的解为(x1,x2,x3,…,x8),约束条件为:在8x8的棋盘上,其中任意两个xi和xj不能位于棋盘的同行、同列及同对角线。
要求用一位数组进行存储,输出所有可能的排列。
7、迷宫求解:用二维矩阵表示迷宫,自动生成或者直接输入迷宫的格局,确定迷宫是否能走通,如果能走通,输出行走路线。
8、英国人格思里于1852年提出四色问题(fourcolourproblem,亦称四色猜想),即在为一平面或一球面的地图着色时,假定每一个国家在地图上是一个连通域,并且有相邻边界线的两个国家必须用不同的颜色,问是否只要四种颜色就可完成着色。
现在给定一张地图,要求对这张地图上的国家用不超过四种的颜色进行染色。
要求建立地图的邻接矩阵存储结构,输入国家的个数和相邻情况,输出每个国家的颜色代码。
9、以下问题要求统一在一个大程序里解决。
从原四则表达式求得后缀式,后缀表达式求值,从原四则表达式求得中缀表达式,从原四则表达式求得前缀表达式,前缀表达式求值。
数组与广义表鞍点问题:若矩阵A中的某一元素A[i,j]是第i行中的最小值,而又是第j列中的最大值,则称A[i,j]是矩阵A中的一个鞍点。
写出一个可以确定鞍点位置的程序。
稀疏矩阵转置:输入稀疏矩阵中每个元素的行号、列号、值,建立稀疏矩阵的三元组存储结构,并将此矩阵转置,显示转置前后的三元组结构。
用头尾链表存储表示法建立广义表,输出广义表,求广义表的表头、广义表的表尾和广义表的深度。
树和二叉树以下问题要求统一在一个大程序里解决。
按先序遍历的扩展序列建立二叉树的存储结构二叉树先序、中序、后序遍历的递归算法二叉树中序遍历的非递归算法二叉树层次遍历的非递归算法求二叉树的深度(后序遍历)建立树的存储结构求树的深度图输入任意的一个网,用普里姆(Prim)算法构造最小生成树。
要求建立图的存储结构(邻接表或邻接矩阵),输入任意的一个图,显示图的深度优先搜索遍历路径。
要求建立图的存储结构(邻接表或邻接矩阵),输入任意的一个图,显示图的广度优先搜索遍历路径。
查找设计一个读入一串整数构成一颗二叉排序树的程序,从二叉排序树中删除一个结点,使该二叉树仍保持二叉排序树的特性。
24、设定哈希函数H(key)=keyMOD11(表长=11),输入一组关键字序列,根据线性探测再散列解决冲突的方法建立哈希表的存储结构,显示哈希表,任意输入关键字,判断是否在哈希表中。
排序以下问题要求统一在一个大程序里解决。
25、折半插入排序26、冒泡排序27、快速排序28、简单选择排序29、归并排序30、堆排序
1