基于MFC界面设计的图像中值、均值滤波处理,实现了图像的打开及其修改再现
2023/8/3 6:54:07 1.84MB 中值,均值滤波
1
一、引言自适应噪声抵消技术是一种能够很好的消除背景噪声影响的信号处理技术,应用自适应噪声抵消技术,可在未知外界干扰源特征,传递途径不断变化,背景噪声和被测对象声波相似的情况下,能够有效地消除外界声源的干扰获得高信噪比的对象信号。
从理论上讲,自适应干扰抵消器是基于自适应滤波原理的一种扩展,简单的说,把自适应滤波器的期望信号输入端改为信号加噪声干扰的原始输入端,而它的输入端改为噪声干扰端,由横向滤波器的参数调节输出以将原始输入中的噪声干扰抵消掉,这时误差输出就是有用信号了。
在数字信号采集、处理中,线性滤波是最常用的消除噪声的方法。
线性滤波容易分析,使用均方差最小准则的线性滤波器能找到闭合解,若噪声干扰类型为高斯噪声时,可达到最佳的线性滤波效果。
计算机论文www.lunwendingzhi.com;
机械毕业论文www.lunwenwanjia.com在实际的数字信号采集中,叠加于信号的噪声干扰往往不是单一的高斯噪声,而线性滤波器所要求的中等程度噪声偏移,使线性滤波器对非高斯噪声的滤波性能下降,为克服线性滤波器的缺点,往往采用非线性滤波器,所以本文采用神经网络对信号进行滤波处理。
二、基于BP算法和遗传算法相结合的自适应噪声抵消器在本文中,作者主要基于自适应噪声对消的原理对自适应算法进行研究,提出了一种新的算法,即BP算法和遗传算法相结合的自适应算法。
作者对BP网络的结构及算法作了一个系统的综述,分析了BP算法存在的主要缺陷及其产生的原因。
传统的BP网络既然是一个非线性优化问题,这就不可避免地存在局部极小问题,网络的极值通过沿局部改善的方向一小步进行修正,力图达到使误差函数最小化的全局解,但实际上常得到的使局部最优点。
管理毕业论文网www.yifanglunwen.com;
音乐毕业论文www.xyclww.com;
英语毕业论文www.lanrenbanjia.com;
学习过程中,下降慢,学习速度缓,易出现一个长时间的误差平坦区,即出现平台。
通过对遗传算法文献的分析、概括和总结,发现遗传算法与其它的搜索方法相比,遗传算法(GA)的优点在于:不需要目标函数的微分值;
并行搜索,搜索效率高;
搜索遍及整个搜索空间,容易得到全局最优解。
所以用GA优化BP神经网络,可使神经网络具有进化、自适应的能力。
BP-GA混合算法的方法出发点为:经济论文www.youzhiessay.com教育论文www.hudonglunwen.com;
医学论文网www.kuailelunwen.com;
(1)利用BP神经网络映射设计变量和目标函数、约束之间的关系;
(2)用遗传算法作实现优化搜索;
(3)遗传算法中适应度的计算采用神经网络计算来实现。
BP-GA混合算法的设计步骤如下:(1)分析问题,提出目标函数、设计变量和约束条件;
(2)设定适当的训练样本集,计算训练样本集;
(3)训练神经网络;
(4)采用遗传算法进行结构寻优;
(5)利用训练好的神经网络检验遗传算法优化结果。
若满足要求,计算结束;
若误差不满足要求,将检验解加入到训练样本集中,重复执行3~5步直到满足要求。
通过用短时傅立叶信号和余弦信号进行噪声对消性能测试,在单一的BP算法中,网络的训练次数、学习速度、网络层数以及每层神经元的节点数都是影响BP网络的重要参数,通过仿真实验可以发现,适当的训练次数可以使误差达到极小值,但是训练次数过多,训练时间太长,甚至容易陷入死循环,或者学习精度不高。
学习速度不能选择的太大,否则会出现算法不收敛,也不能选择太小,会使训练过程时间太长,一般选择为0.01~0.1之间的值,再根据训练过程中梯度变化和均方误差变化值确定。
基于梯度下降原理的BP算法,在解空间仅进行单点搜索,极易收敛于局部极小,而GA的众多个体同时搜索解空间的许多点,因而可以有效的防止搜索过程收敛于局部极小,只有算法的参数及遗传算子的操作选择得当,算法具有极大的把握收敛于全局最优解。
使用遗传算法需要决定的运行参数中种群大小表示种群中所含个体的数量,种群较小时,可提高遗传算法的运算速度,但却降低了群体的多样性,可能找不出最优解;
种群较大时,又会增加计算量,使遗传算法的运行效率降低。
一般取种群数目为20~100;
交叉率控制着交叉操作的频率,由于交叉操作是遗传算法中产生新个体的主要方法,所以交叉率通常应取较大值,但若过大的话,又可能破坏群体的优良模式,一般取0.4~0.99;
变异率也是影响新个体产生的一个因素,变异率小,产生个体少,变异率太大,又会使遗传算法变成随机搜索,一般取变异率为0.0001~0.1。
由仿真结果得知,GA与BP算法的混合算法不论是在运行速度还是在运算精度上都较单纯的BP算法有提高,去噪效果更加明显,在信噪比的改善程度上,混合算法的信噪
2023/6/7 6:07:05 2KB BP算法 遗传算法 matlab 源码
1
一、对A/D采样后的高频/中频信号序列进行频谱搬移(通过与数控振荡器产生的数字本振信号序列进行相乘下变频到基频)。
二、对基频上高采样率的信号序列进行抽取,多采样率变换,降低数字信号序列密度。
实际的数字下变频在对高频/中频信号序列进行A/D采样之前为了防止发生频率混叠,要进行预滤波处理。
2023/5/31 15:13:31 6KB 数字下变频 Matlab DDC
1
本人利用matlab编写的伪距单点定位,包含rinex导航文件和观测文件读取的新方法,独立与定位程序之外。
在单点定位的同时还进行了地球自转改正,卫星钟误差改正,接收机钟误差改正,地球自转改正,绝对效应改正,电离层改正和对流层改正、额外部分还进行了简单的卡尔曼滤波处理定位结果。
2023/3/14 8:43:07 1.21MB 各项改正
1
该算法用于自回归输入模型,是一种迭代的算法。
其基本思想是基于对数据先进行一次滤波处理,后利用普通最小二乘法对滤波后的数据进行辨识,进而获得无偏分歧估计。
但是当过程的输出信噪比比较大或模型参数较多时,这种数据白色化处理的可靠性就会下降,辨识结果往往会是有偏估计。
数据要充分多,否则辨识精度下降。
模型阶次不宜过高。
初始值对辨识结果有较大影响。
2023/1/16 12:32:43 1KB RGLS
1
matlab语音除噪音信号处理是语音学与数字信号处理技术相结合的交叉学科,课题在这里不讨论语音学,而是将语音当做一种特殊的信号,即一种“复杂向量”来看待。
也就是说,课题更多的还是体现了数字信号处理技术[1]。
数字信号处理技术主要研究离散线性时不变系统,数字滤波和频谱分析是它的的两个主要分支。
数字滤波(Digitalfilter),即在形形色色的信号中提取所需信号,抑制不必要的干扰。
数字滤波器可以在时域实现也可以在频域实现,主要有两种类型;无限长冲击数字滤波器(IIR)和有限长冲击数字滤波器(FIR)。
频谱分析(SA,SpectrumAnalysis),对各种信号进行频域上的加工处理,其核心内容是快速傅里叶变换(FFT),分析的结果是一频率为坐标的各种物理量的谱线和曲线[2]。
从课题的中心来看,课题“基于MATLAB的有噪声语音信号处理”是希望将数字信号处理技术应用于某一实际领域,这里就是指对语音及加噪处理。
作为存储于计算机中的语音信号,其本身就是离散化了的向量,我们只需将这些离散的量提取出来,就可以对其进行处理了。
这一过程的实现,用到了处理数字信号的强有力工具MATLAB[3]。
MATLAB是矩阵实验室(MatrixLaboratory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。
它提供了功能齐全的滤波器设计,与信号处理交互式图形用户界面(Interactivegraphicaluserinterface),主要包括FDATool和SPATool两种交互式工具,其中FDATool主要用于数字滤波器设计与分析,而SPATool不仅可以设计分析滤波器,而且可以对信号进行时域与频域的分析[4]。
通过MATLAB里几个命令函数的调用,很轻易的在实际语音与数字信号的理论之间搭了一座桥。
课题的特色在于它将语音信号看作一个向量,于是就把语音数字化了。
那么,就可以完全利用数字信号处理的知识来处理语音及加噪处理问题。
我们可以像给一般信号做频谱分析一样,来对语音信号做频谱分析,也可以较容易的用数字滤波器来对语音进行滤波处理。
[5]
2021/8/15 16:17:31 829KB matlab
1
本人利用matlab编写的伪距单点定位,包含rinex导航文件和观测文件读取的新方法,独立与定位程序之外。
在单点定位的同时还进行了地球自转改正,卫星钟误差改正,接收机钟误差改正,地球自转改正,绝对效应改正,电离层改正和对流层改正、额外部分还进行了简单的卡尔曼滤波处理定位结果。
2016/10/26 11:56:11 1.21MB 各项改正
1
完好的下变频matlab仿真程序,包括:1产生线性调频信号;
2对线性调频信号的时频谱图分析;
3进行数字下变频;
4进行低通滤波,处理I路和Q路信号,滤波后输出,画图分析。
1
完好的下变频matlab仿真程序,包括:1产生线性调频信号;
2对线性调频信号的时频谱图分析;
3进行数字下变频;
4进行低通滤波,处理I路和Q路信号,滤波后输出,画图分析。
1
Visualc++数字图像处理典型算法及实例源代码,内容包括:源码目录结构图、256色转灰度图、Hough变换、Walsh变换、二值化变换、亮度增减、傅立叶变换、反色、取对数、取指数、图像平移、图像旋转、图像细化、图像缩放、图像镜像、均值滤波、对比度拉伸、拉普拉斯锐化(边缘检测)、方块编码、梯度锐化、灰度均衡、用Canny算子提取边缘、直方图均衡、团圆余弦变换、维纳滤波处理、逆滤波处理、阈值变换、高斯平滑等。
2017/8/21 19:39:08 13.41MB VC 数字图像处理 算法 源代码
1
共 40 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡