精确的电力负荷预测可以保证电力供应的稳定,降低用电成本,提高供电质量。
在进行短期电力负荷预测时,考虑到时序数据的时间相关性,应用张量流深度学习框架构建了LSTM神经网络模型,对电力负荷时序数据进行回归预测
2020/2/6 7:07:35 unknown 电力负荷 深度学习
1
该代码基于深度学习框架Keras可以一键跑(无需单独下载数据文件)辨认率达到了98%以上
2020/2/20 19:04:15 971B 源码
1
人工智能基础视频教程零基础入门课程第十二章人工智能基础视频教程零基础入门课程,不需要编程基础即可学习,共15章,由于整体课程内容太大,无法一次传输,分章节上传。
第一章人工智能开发及远景引见(预科)第二章线性回归深入和代码实现第三章梯度下降和过拟合和归一化第四章逻辑回归详解和应用第五章分类器项目案例和神经网络算法第六章多分类、决策树分类、随机森林分类第七章分类评估、聚类第八章密度聚类、谱聚类第九章深度学习、TensorFlow安装和实现第十章TensorFlow深入、TensorBoard十一章DNN深度神经网络手写图片识别十二章TensorBoard可视化十三章卷积神经网络、CNN识别图片十四章卷积神经网络深入、AlexNet模型十五章Keras深度学习框架
2022/9/9 0:14:27 351.03MB 人工智能 机器学习 TensorFlow TensorBoard
1
matlabdir源代码Crop_DiseasesCropDiseasesDetection代码源于Google识别API,根据数据情况做了少许修改。
深度学习框架Tensorflow1.9密码:yq30生成TFrecords运行process.py将数据图像压缩生成TFRecords类型的数据文件,可以提高数据读取效率#修改process.py主函数路径,改为本人的下载后压缩的路径pythonprocess.py训练模型#配置train.sh参数#生成的TFrecords路劲(根据本人的实际修改,下同)DATASET_DIR=/media/zh/DATA/AgriculturalDisease20181023/tf_data#训练过程产生的模型,迭代保存的数据位置TRAIN_DIR=/media/zh/DATA/AgriculturalDisease20181023/check_save/resnetv1_101_finetune#定义预训练模型定义(预训练模型下载地址上面有给出)CHECKPOINT_PATH=/media/zh/DA
2017/8/5 16:52:45 720KB 系统开源
1
基于keras深度学习框架,使用卷积神经网络CNN实现cifar-10图片分类
2018/7/11 20:10:02 5KB cifar-10
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡