数字图像处理与机器视觉VisualC++与Matlab实现,第一版的书籍,包括人脸识别,神经网络CNN等内容
2024/11/27 7:50:21 104.12MB 图像处理
1
有限资源下生产计划排程甘特图软件,可以参人员,机器,工装夹具等进行时间和资源的占有情况用Ganttchart进行可视化
2024/11/27 2:12:43 30.89MB 软件
1
SVM支持向量机,预测分类回归,支持向量机(SupportVectorMachine,SVM)是CorinnaCortes和Vapnik等于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。
在机器学习中,支持向量机(SVM,还支持矢量网络)是与相关的学习算法有关的监督学习模型,可以分析数据,识别模式,用于分类和回归分析。
2024/11/26 14:13:05 415KB SVM 支持向量机
1
在U型件冲压工艺中,回弹现象不可避免。
如何根据工艺参数预测回弹值大小,是一个重要问题。
在这里我选取了4个工艺参数(板料厚度,摩擦系数,凹模圆角半径,压边力),通过Abaqus获取了2688个仿真实验样本,得到了该四个因素对回弹的影响。
得到该数据集合。
有兴趣的可以用来做机器学习中的回归预测的练习。
2024/11/26 10:26:27 289KB abaqus 板料冲压 回弹预测 回归预测
1
将原CMU讲义翻译成中文、补充了大量内容,使得第三章对汇编的介绍相对完整。
机器指令细节,请查阅intel的相关资料。
2024/11/22 19:44:43 4.97MB CMU-CS 中文讲义
1
数据集在IT行业中,特别是在机器学习和计算机视觉领域,扮演着至关重要的角色。
"各种病虫害的高清数据集"是一个专门针对农业病虫害识别的图像数据集,它包含了五个不同类别的高清图片,这些图片是jpg格式,非常适合用于训练和测试深度学习模型。
我们来详细了解一下数据集的概念。
数据集是模型训练的基础,它包含了一系列有标记的样本,这些样本用于训练算法学习特定任务的特征和模式。
在这个案例中,数据集中的每个样本都是一张病虫害的高清图片,可能包括农作物上的疾病症状或害虫。
这些图片经过分类,分别属于五个不同的类别,这意味着模型将需要学习区分这五种不同的病虫害类型。
在计算机视觉任务中,高清图片通常能提供更多的细节,有助于模型更准确地学习和理解图像特征。
jpg格式是一种常见的图像存储格式,它采用了有损压缩算法,能在保持图像质量的同时,减少文件大小,适合在网络传输和存储中使用。
对于这样的数据集,可以进行以下几种机器学习任务:1.图像分类:训练一个模型,输入一张病虫害图片,输出图片所属的类别。
例如,输入一张叶片有斑点的图片,模型应该能够判断出这是哪种病害。
2.目标检测:除了识别类别,还需要确定病虫害在图片中的位置,这要求模型能够定位并框出病虫害的具体区域。
3.实例分割:进一步细化目标检测,不仅指出病虫害的位置,还能精确到每个个体,这对于计算病虫害数量或者分析病害程度非常有用。
4.异常检测:训练模型识别健康的农作物图像,当出现病虫害时,模型会发出警报,帮助农民尽早发现并处理问题。
构建这样的模型通常涉及以下几个步骤:1.数据预处理:包括图片的缩放、归一化、增强(如翻转、旋转)等,目的是提高模型的泛化能力。
2.模型选择:可以使用经典的卷积神经网络(CNN),如AlexNet、VGG、ResNet等,或者预训练模型如ImageNet上的模型,再进行微调。
3.训练与验证:通过交叉验证确保模型不会过拟合,并调整超参数以优化性能。
4.测试与评估:在独立的测试集上评估模型的性能,常用的指标有准确率、召回率、F1分数等。
5.部署与应用:将训练好的模型部署到实际系统中,如智能手机APP或农田监控系统,实时识别并报告病虫害情况。
"各种病虫害的高清数据集"为开发精准的农业智能识别系统提供了基础,通过AI技术可以帮助农业实现智能化、精准化管理,提升农作物的产量和质量,对现代农业发展具有重要意义。
2024/11/22 10:52:17 840.11MB 数据集
1
Delphi仿QQ聊天软件P2P全部源码,无加密,组件齐全,调试非常简单方便!发送联机或脱机消息,同时可自定义消息字体、颜色、大小等信息,支持插入表情符号,屏幕截取。
支持多人对话以及消息群发等功能;
在线即时语音、视频聊天;穿透网关防火墙,不同局域网任意对话;系统采用先进的点对点通讯技术,消息(包括文本、语音、视频、文件)的传输大多数情况不需要经服务器中转而直接发往接收者所使用的机器,传输速度更快。
而且因服务器仅仅只是起着维护用户状态列表的功能,因此占用资源极少,可允许同时在线的人数就越多,对系统的影响也最小。
可以设置各种离线状态,支持自定义状态;邮箱监测,新邮件到来提醒;用户可自定义界面,界面皮肤可在线更新;能和您的网站相融合,如果您在线,点击网站上在线图标,立即就能与您聊天沟通!
2024/11/21 21:33:18 45.54MB Delphi QQ P2P 源码
1
数字图像处理是研究如何通过计算机技术处理和分析图像的学科,主要应用于图像增强、恢复、分割、特征提取和识别等任务。
数字图像处理的第三版由RafaelC.Gonzalez和RichardE.Woods编写,二人来自田纳西大学和MedDataInteractive公司。
这本书对数字图像处理领域进行了全面的介绍,涵盖了数字图像处理的历史背景、基本概念、技术和算法。
冈萨雷斯的这本书被认为是该领域的重要参考资料。
数字图像处理可以应用于医疗成像、遥感、安全监控、图像压缩、机器视觉等多个领域。
例如,在医疗成像中,数字图像处理可以帮助医生更清晰地观察患者身体组织的结构,从而提高诊断的准确性;
在遥感领域,通过处理和分析遥感图像可以获取地球表面的信息,用于天气预报、地理信息系统的建立等。
数字图像处理涉及的算法和工具主要包括图像的采集、处理、分析和理解等步骤。
图像采集是使用摄像头、扫描仪等设备将图像转换为计算机可以处理的数据形式;
图像处理通常包括图像的预处理(如去噪、对比度增强)、图像变换(如傅里叶变换、小波变换)和图像恢复等;
图像分析主要涉及到图像分割、特征提取、模式识别等内容;
图像理解则试图使计算机能够解释图像内容,达到类似于人类理解图像的水平。
数字图像处理的起源可以追溯到20世纪50年代末60年代初,当时人们开始使用计算机技术对图像进行处理。
早期的数字图像处理主要用于空间探索、卫星图像处理等领域,随着计算机技术的发展和图像处理理论的完善,数字图像处理逐渐扩展到生物医学、工业、安全等其他领域。
数字图像处理的一个重要分支是数字视频处理,其关注如何处理连续的图像序列,以实现视频压缩、视频增强、运动分析等功能。
视频处理技术在高清电视、网络视频、电影后期制作等行业有着广泛的应用。
数字图像处理是一个不断发展的领域,随着人工智能技术的发展,基于深度学习的图像处理技术成为当前的研究热点。
深度学习模型,尤其是卷积神经网络(CNN)在图像识别、分类、目标检测和图像分割等方面显示出了巨大的潜力。
总结来说,数字图像处理是通过计算机技术来处理图像数据,使之更适合人眼或机器分析的一门技术。
随着技术的进步和应用的拓展,它在多个行业中发挥着越来越重要的作用。
冈萨雷斯的《数字图像处理》作为该领域的经典教材,为学习和研究这一领域的专业人士提供了宝贵的资源和参考。
2024/11/18 17:16:43 19.14MB digital image processing
1
 设计一台微程序控制的模型计算机1) 拟定指令系统(含机器指令的字长、格式、寻址方式及指令的种类等)2) 设计数据通路,给出模型机中所含的部件及其间的连接,以及信息在数据通路中传送时所需的微命令。
3) 设计微程序的流程图4) 设计微指令5) 编写微程序6) 使用VHDL编码,仿真检测实验的功能是否达到设计要求其中包含完整的课设报告以及源程序。
2024/11/18 3:04:56 817KB 微程控制CPU
1
用MATLAB复现《基于机器视觉的二维尺寸检测》作者:谢俊,吴荥荥,朱广韬,王路路,来自杂志《工具技术》。
2024/11/17 13:23:47 494KB MATLAB cv hough变换 工件尺寸检测
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡