在PSCAD/EMTDC平台上搭建13节点中性点不接地配电网的仿真模型,其中输电线路采取分布式参数模型进行建模。
改变故障的发生时间,发生位置以及故障类型,在PSCAD/EMTDC平台上进行仿真。
2023/12/4 4:21:38 2.97MB pscad 配电网仿真 建模
1
1.JLink-v9_bootloader固件.bootloader.bin2.JLINK9可升级固件及固件更新工具.JlinkV9.3原理图.pdfjlink-v9.5原理图.pdfJ-LINK-V9-bootloader.dfujlink-v9激活.txt详细操作步骤说明.docxST_DfuSe_Demo_V3.0.6_Setup.zip3.升级方式:DFUISP(通过boot引脚设置从systemmemory启动)。
工具:ST官方工具,ST_DfuSe_Demo_V3.0.6。
硬件:JLinkV9.x硬件为stm32f205rc.操作步骤:1.参考JLinkV9.3或JLinkV9.5原理图(注意:原理图和你手上实物可能不是100%一致。
)。
通过boot引脚设置从systemmemory启动:设置stm32f205rc的引脚电平为boot0:1,boot1:0(如果原硬件JLink上无跳线帽,需要自己手动焊线设置电平),使上电后,进入systemmemory。
下图是我的JLinkV9.3,boot0引脚,PCB上直接连接到GND上了,用美工刀片挑起这个引脚,再焊线的。
Boot1引脚,在原理图中,连接在200欧姆的排阻上,我是从排阻上焊线的。
由于从网上下载了4份资料,需要反复测试,反复焊线设置启动方式,太麻烦了,后面加焊了排针,使用了杜邦线。
2.安装ST_DfuSe_Demo_V3.0.6,驱动不会自动安装,需要自己更新驱动。
把JLink通过USB线插到电脑上,在设备管理器中,会显示未知驱动设备,手动浏览到ST_DfuSe_Demo_V3.0.6的安装路径(如:C:\ProgramFiles(x86)\STMicroelectronics\Software\DfuSev3.0.6\Bin\Driver\Win7\x64),即可完成驱动安装。
3.运行DfuSeDemo,4.点击Choose,选择文件J-LINK-V9-bootloader.dfu,点击Upgrade,开始更新。
5.拔掉USB线,恢复启动引脚电平boot0:0,boot1:x(这个脚是JTAG的数据线引脚,取消接地即可)。
插上USB线,打开JLink.exe,提示升级,成功后,即为最新版本(我的JFlash版本为JLink_V634f,升级后版本为:firmware:J-LinkV9compiledAug23201809:45:44,Hardwareversion:V9.20.)。
2023/11/13 15:10:04 19.46MB JLink_V9.3 JLink_V9.5
1
这是用XS128驱动OLED的程序。
------------------------------------CodeWarrior5.0/1Target:MC9S12XS128Crystal:16.000Mhzbusclock:16.000MHzpllclock:32.000MHz============================================使用说明:OLED电源使用5V。
----------------G电源地3.3V接5V电源,电源跟模块之间串接100欧姆电阻,并加3.3V钳位二极管D0PORTE_PE2单片机跟模块之间串接2k-3.3k电阻D1 PORTE_PE3单片机跟模块之间串接2k-3.3k电阻RSTPORTE_PE4单片机跟模块之间串接2k-3.3k电阻DCPORTE_PE5单片机跟模块之间串接2k-3.3k电阻CS已接地,不用接============================================如果用户使用的是5V单片机,请看用户手册,切勿烧毁模块!============================================*/#include"derivative.h"#include#include#include"OLED12864.h"//PLL初始化子程序BUSClock=16MvoidSetBusCLK_48M(void){CLKSEL=0X00;//disengagePLLtosystemPLLCTL_PLLON=1;//turnonPLLSYNR=0xc0|0x05;REFDV=0x80|0x01;POSTDIV=0x00;//pllclock=2*osc*(1+SYNR)/(1+REFDV)=96MHz;_asm(nop);//BUSCLOCK=48M_asm(nop);while(!(CRGFLG_LOCK==1));//whenpllissteady,thenuseit;CLKSEL_PLLSEL=1;//engagePLLtosystem;}voidDly_ms(intms){intii,jj;if(ms<1)ms=1;for(ii=0;ii<ms;ii++)for(jj=0;jj<1335;jj++);//16MHz--1ms//for(jj=0;jj<4006;jj++);//48MHz--1ms//for(jj=0;jj<5341;jj++);//64MHz--1ms}//============================MAIN()===========================/*********************主函数************************************/voidmain(void){bytei=0;SetBusCLK_48M();DDRB=0XFF;DDRE=0XFF;PORTB=0XFF;LCD_Init();DisableInterrupts;for(;;){//LCD_Fill(0xff);//Dly_ms(100);//LCD_Fill(0x00);//Dly_ms(2000);//LCD_CLS();//LCD_Print(12,0,"广州Beyond科技");//LCD_Print(15,2,"飞思卡尔智能车");//LCD_Print(43,4,"专营店");//LCD_Print(15,6,"智能车首选液晶");//LCD_P8x16Str(48,4,"OLED");//LCD_P6x8Str(16,6,"b
2023/10/17 14:34:33 255KB OED例程
1
一. 选择题1. 完整的计算机应包括______。
A运算器、存储器、控制器;
B外部设备和主机;
C主机和实用程序;
D配套的硬件设备和软件系统;
2. 用64位字长(其中1位符号位)表示定点整数时,所能表示的数值范围是______。
A[0,264–1]B[0,263–1]C[0,262–1]D[0,263]3. 四片74181ALU和1片74182CLA器件相配合,具有如下进位传递功能______。
A行波进位;
B组内先行进位,组间先行进位;
C组内先行进位,组间行波进位;
D组内行波进位,组间先行进位;
4. 某机字长32位,存储容量为1MB,若按字编址,它的寻址范围是______。
A1MB512KBC256KD256KB5. 某一RAM芯片,其容量为512×8位,包括电源和接地端,该芯片引出线的最小数目应是______。
A23B25C50D19
1
电力系统故障总的来说可以分为两大类:横向故障和纵向故障。
横向故障是指各种类型的短路,包括ABC三相接地短路故障,AB相不接地短路故障,A相接地短路故障和AB相接地短路故障。
三相系统中发生的短路有四种基本类型:ABC三相接地短路故障,AB相不接地短路故障,A相接地短路故障和AB相接地短路故障。
最后使用MATLAB软件对电力系统进行故障模拟实验,人为地设置故障类型求其故障电流和故障电压。
通过三相短路两相短路两相接地短路单相接地短路证明运用MATLAB对电力系统故障进行仿真和程序编写。
2023/8/13 9:34:28 7.57MB MATLAB 电力故障 短路计算
1
三相电力系统故障仿真,包括单相接地短路,两相接地及相间短路,
2023/7/19 6:29:28 22KB 电力系统故障
1
提出了一种具有带陷波特性的共面波导(CPW)馈电新型平面超宽带天线。
拟议中的天线由一个矩形的金属辐射贴片和一个锥形的弧形接地平面组成。
为了实现超宽带,引入了三种修改方式,第一种是在贴片的上角去除90度的扇形角,第二种是将贴片的底部成形为弧形,第三种修改是以便在馈线附近的接地平面的每一侧上消除一个小的风扇角度。
仿真结果表明,对于VSWR<2,建议的天线在3.0至23GHz的频率范围内工作。
通过在辐射补丁中嵌入C形缝隙,无线局域网(WLAN)的5至6GHz带宽之间的频带陷波将为获得这项工作中的所有模拟都是使用电磁软件AnsoftHFSS11进行的。
与最近提出的天线相比,该天线具有带宽大,带隙特性好,尺寸紧凑和易于设计的优点。
给出了拟议天线的细节,仿真结果表明该天线在整个频段上具有稳定的辐射方向图和良好的增益平坦度
2023/7/15 10:48:13 692KB Coplanar waveguide (CPW); ultra
1
在分析小电流接地故障零模网络暂态特征的基础上,提出了基于暂态信号Hilbert变换的小电流接地故障定位新方法。
该方法利用特征频段内暂态零模电压的Hilbert变换与零模电流的乘积计算故障方向,根据故障点两侧功率方向的不同确定故障区段。
最后利用仿真验证了该方法的正确性。
1
现代直流伺服控制技术及其系统设计目录代序言前言第1章绪论1直流伺服控制技术的发展2现代直流PWM伺服驱动技术的发展2.1国内外发展概况2.2直流PWM伺服驱动装置的工作原理和特点2.3功率控制元件的应用及控制电路集成化2.4PWM系统发展中待研究的问题3现代伺服控制技术展望第2章不可逆直流PWM系统1无制动状态的不可逆PWM系统1.1电流连续时PWM系统控制特性分析1.2电流断续时PWM系统控制特性分析2带制动回路的不可逆PWM系统第3章可逆直流PWM系统1双极模式可逆PWM系统1.1T型双极模式PWM控制原理1.2H型双极模式PWM控制原理1.3双极模式PWM控制特性分析2单极模式可逆PWM系统2.1H型单极模式同频可逆PWM控制2.2H型单极模式倍频可逆PWM控制3受限单极模式可逆PWM系统3.1受限单极模式同频可逆PWM控制系统3.2工作特性的定量分析3.3计算机辅助分析3.4受限单极模式倍频可逆PWM控制4控制方案的对比第4章PWM功率转换电路设计1PWM功率转换用GTR1.1开关特性1.2GTR的功率损耗及PWM功率转换电路对其特性的要求1.3GTR存储时间对PWM系统的影响2GTR的损坏和保护2.1GTR的耐压与损坏2.2GTR的二次击穿和安全工作区2.3GTR暂态保护3达林顿复合型功率模块的应用3.1复合型达林顿模块的电路结构3.2达林顿模块作为开关使用3.3达林顿模块并行驱动3.4达林顿模块的应用4缓冲器设计和负载线整形4.1缓冲器的必要性4.2负载线分析4.3在PWM系统中的缓冲器设计举例第5章PWM系统控制电路1脉宽调制器的一般特性及电路1.1脉宽调制器的一般特性1.2恒频波形发生器1.3脉宽调制器2保护型脉宽调制及脉冲分配电路2.1双门限延迟比较的V/W电路2.2二极管电桥反馈式窗口V/W电路2.3具有阻容延迟的PWM变换电路2.4脉冲分配逻辑延时电路3保护电路3.1电流保护型式与特点3.2保护电流的实时取样和霍尔效应电流检测装置设计3.3欠电压、过电压保护3.4瞬时停电保护3.5保护电路举例4基极驱动电路4.1基极恒流驱动4.2基极电流自适应驱动电路4.3自保护型基极驱动电路4.4典型基极驱动电路5控制电路集成化、模块化5.1一种新型SG1731型PWM集成电路5.2晶体管驱动模块简介5.3应用举例第6章PWM系统工程设计中的有关问题1功率转换电路供电电源的设计问题1.1泵升电压对功率转换电路及供电电源的影响1.2PWM系统中的反馈能量1.3反馈能量的存储及其耗散2PWM系统电流波形系数与电动机的有效出力3PWM开关频率的选择4电枢回路附加电感的设计原则5浪涌电流和电压抑制5.1合闸浪涌电流的抑制5.2浪涌电压吸收第7章PWM系统电磁兼容性设计1电磁干扰模型分析和干扰传递1.1干扰源1.2敏感单元1.3干扰传递方式2抑制或消除干扰的方法2.1PWM功率转换电路中GTR开关干扰源抑制2.2元器件的合理布局与布线2.3接地设计2.4屏蔽与隔离2.5滤波3PWM系统电磁兼容性设计导则3.1电源3.2电动机3.3GTR固态开关3.4开关控制器件3.5模拟电路3.6数字电路3.7微型计算机第8章现代直流伺服控制元件与
2023/7/12 3:46:22 13.04MB 直流伺服 控制 系统设计 秦继荣
1
为了解决接地、滤波和屏蔽等传统的电磁兼容处理措施的不足,采用扩频技术对系统时钟波形进行调制,通过产生一个具有边带谐波的频谱,将已有的窄带时钟调制到更宽的频谱,同时降低基频和谐波的峰值频谱能量。
文章对扩频技术应用原理及影响因素进行分析,结合车载电子终端中频辐射骚扰测试实例,证明时钟扩频技术可以有效地改善车载电子电磁兼容性能。
1
共 44 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡