V0.6.0:加入文件拖放功能。
V0.5.5:修正建立新的配置文件时,保存失败的Bug。
V0.5.4:修正数制计算器中输入A-F时的bug,增加源数据存储类型选择。
0.5.3:修改图标,部分界面。
0.5.2:About界面修改,添加更新网址。
0.5.1:修正块另存时新建文件保存失败的Bug。
0.5:新增文件内、文件间块移动、复制、交换、另存等功能0.4:新增转换为二进制后比较功能本人继MCUTool以后的另外一个单片机开发实用工具软件,用于单片机调试过程中简单的参量修改,省略修改源代码、再编译的过程,直接修改目标文件。
尤其是对eeprom数据的修改、调整更为方便实用。
本软件编写的目的是用来编辑存放于单片机Flash或EEPROM中的数据,支持IntelHex格式以及MotorolaS格式的数据文件,也可以编辑二进制的内存映射文件。
数据的编辑可以通过常量定义的方式,也可以通过内存映射的方式进行。
同时可以在两种16进制格式文件之间相互转换。
格式转换以行数据为单位,以确保转换前后数据不会改变。
另外提供十进制、十六进制转换器,转换结果可以作为普通显示或作为内存映射,作内存映射时可以选择多字节数据的存储方式。
二进制比较功能,通过不同工具生成的Hex文件可能因为格式而无法进行文本方式比较,本工具可以首先转换为二进制数据再进行比较,免去自行转换的麻烦。
单文件内/双文件间的块操作,包括复制、移动、交换、另存等等,方便实验数据提取、复制。
2024/10/18 12:14:13 587KB Intel Hex S-Record
1
倾情奉献,完全可以照抄。
实验一运算器实验实验二移位运算实验实验三存储器读写和总线控制实验附加实验总线控制实验实验五微程序设计实验一、实验目的:1. 掌握运算器的组成及工作原理;
2. 了解4位函数发生器74LS181的组合功能,熟悉运算器执行算术操作和逻辑操作的具体实现过程;
3. 验证带进位控制的74LS181的功能。
二、预习要求:1. 复习本次实验所用的各种数字集成电路的性能及工作原理;
2. 预习实验步骤,了解实验中要求的注意之处。
三、实验设备:EL-JY-II型计算机组成原理实验系统一套,排线若干。
.........八、行为结果及分析:实验数据记录如下表:DR1 DR2 S3S2S1S0 M=0(算术运算) M=1 Cn=1无进位 Cn=0有进位 (逻辑运算) 理论值 实验值 理论值 实验值 理论值 实验值04H 06H 0000 F=(04) F=(04) F=(05) F=(05) F=(05) F=(05)04H 06H 0001 F=(0A) F=(0A) F=(0B) F=(0B) F=(FC) F=(FC)04H 06H 0010 F=(FD) F=(FD) F=(FE) F=(FE) F=(00) F=(00)04H 06H 0011 F=(FF) F=(FF) F=(00) F=(00) F=(FD) F=(FD)04H 06H 0100 F=(04) F=(04) F=(05) F=(05) F=(F9) F=(F9)04H 06H 0101 F=(0A) F=(0A) F=(0B) F=(0B) F=(F9) F=(F9)04H 06H 0110 F=(FD) F=(FD) F=(FE) F=(FE) F=(FD) F=(FD)04H 06H 0111 F=(FF) F=(FF) F=(00) F=(00) F=(00) F=(00)经过比较可知实验值与理论值完全一致。
此次实验的线路图的连接不是很难,关键是要搞清楚运算器的原理,不能只是盲目的去连线。
在线路连接完成后,就按照要求置数,然后查看结果,与理论值比较。
如果没有错误就说明前面的实验中没有出现问题;
否则,就要重新对照原理图检查实验,找出错误,重新验证读数。
九、设计心得、体会:这次课程设计我获益良多,平时我们能见到的都是计算机的外部结构,在计算机组成原理的学习中,逐步对计算机的内部结构有了一些了解,但始终都停留在理论阶段。
而在本次实验,让我们自己设计8位运算器并验证验证运算器功能发生器(74LS181)的组合功能,让我对运算器的内部结构有了更深的了解,并且对计算机组成原理也有了更深层次的理解,同时这次课程设计还锻炼了我的实验动手能力,也培养了我的认真负责的科学态度。
这次课程设计要求连线仔细认真,不能有半点错误,在刚做这个实验的时候,我就由于粗心没有正确的设置手动开关SW-B和ALU-B,导致存入的数据不正确。
 我在连线过程中也自己总结出了避免出错的方法,就是在接线图上将已经连接好的部分作上记号,连接完后再检查一遍各个分区的条数是否和实验接线图上的一样,如果一样就可以进行下面的实验步骤,就算出错了,改起来也容易多了。
2024/10/14 9:05:06 1.22MB 计算机实验
1
软件介绍:CHI760E上海辰华电化学工作站软件最新实用版。
CHI电化学测量仪/工作站软件内附用户手册,建议用户在使用前先仔细阅读后再进行操作。
仪器的安装    打开包装箱后取出仪器,电源线通讯电缆,电极线和软件盘.    仪器在使用前请先安装CP210X软件(USB驱动程序),打开光盘中的  “USBDriver”文件夹,复制粘贴到硬盘上,然后安装CP210X软件(USB驱动程序)。
    仪器的操作软件安装十分简单.  将软件盘插入驱动器,复制盘上的chiXXX.(XXX为仪器的型号)文件夹,  粘贴到硬盘上,打开硬盘上的文件夹,里面有该仪器的实验数据和一个帮助文件,还有一个操作软件,双击操作软件图标,程序便启动了。
你应考虑将操作软件发送一个快捷方式到桌面上去,将来不必每次都到文件管理器中去找文件,而只需双击桌面上操作软件图标就可启动.    接下来,你应该接上仪器的电源线和电极线.并用USB通讯线将电脑和仪器相连接,然后打开仪器电源,再打开操作软件,  你就可以进行测量了.    要注意的是,你应该先打开仪器电源,然后再打开操作软件,这时软件会自动寻找并匹配通讯端口,而先打开操作软件再打开仪器电源的话,则要手动去设置通讯端口,所以建议先打开仪器电源,再打开操作软件。
2024/10/9 4:54:02 13.37MB 其他资源
1
密立根油滴、刚体转动惯量、杨氏弹性模量、光的干涉……最全实验数据处理工具。
2024/10/7 17:58:46 5.54MB 大学物理实验
1
由于最近时间有限,没有写CSDN,但写了word版的算法总结。
此资源包括MOEAD,NSGA2的MATLAB实现代码以及MOEAD的英文论文的自我学习笔记文档,代码有详细的注释,并且还附有实验数据供读者参考。
之后我会尽快提供python版的代码,还望读者耐心等待。
2024/9/30 13:07:42 25.92MB Evolutionary MOEAD NSGA2
1
系统辨识与自适应控制是控制理论中的两个关键领域,它们在自动化、机器人技术、航空航天、过程控制等众多IT行业中有着广泛的应用。
本压缩包文件包含的资源可能是一系列关于这两个主题的编程代码实例,旨在帮助学习者理解和实践相关算法。
系统辨识是通过收集系统输入和输出数据来构建数学模型的过程,这些模型可以描述系统的动态行为。
在实际应用中,系统辨识通常涉及时间序列分析、最小二乘法、状态空间模型以及参数估计等技术。
通过对系统进行建模,我们可以预测系统响应、优化性能或诊断故障。
例如,对于一个工业生产线,系统辨识可以帮助我们理解机器的运行特性,以便于提高生产效率或预防设备故障。
自适应控制则是控制理论的一个分支,它允许控制器根据系统的未知或变化特性自动调整其参数。
在自适应控制中,关键概念包括自适应律、参数更新规则和不确定性估计。
自适应控制器的设计通常包括两个部分:一是固定结构的控制器,用于处理已知的系统特性;
二是自适应机制,用于处理未知或变化的部分。
例如,在自动驾驶汽车中,自适应控制系统能够实时调整车辆的行驶策略以应对路面条件的变化或驾驶环境的不确定性。
这个压缩包可能包含以下内容:1.**源代码**:可能包含用各种编程语言(如Python、Matlab、C++等)实现的系统辨识和自适应控制算法,例如最小二乘法估计、卡尔曼滤波器、自适应PID控制器等。
2.**数据集**:可能提供了实验数据或模拟数据,用于测试和验证识别算法和自适应控制器的效果。
3.**教程文档**:可能包括详细的步骤说明,解释如何运行代码、解读结果以及如何将理论知识应用于实际问题。
4.**示例问题**:可能涵盖各种工程问题,如机械臂控制、过程控制系统的稳定性分析等,以帮助学习者深入理解这两个领域的应用。
通过学习和实践这些代码,学习者不仅可以掌握系统辨识和自适应控制的基本理论,还能提升编程和解决实际问题的能力。
在IT行业中,这样的技能对于从事控制系统的开发和优化工作至关重要,无论是物联网(IoT)设备、智能机器人还是复杂的自动化生产线,都需要这样的技术来确保系统的高效、稳定运行。
2024/9/30 8:52:27 1.15MB 系统辨识
1
主要介绍用ENVI如何实现地物识别,以求在此过程中更好地熟悉和理解高光谱遥感图像的处理方法和步骤。
本章选用的实验数据是一幅经过校准的AVIRIS图像,处理的结果用于地质学应用,这主要是考虑到,到目前为止地质学研究仍然是高光谱遥感的主要应用领域之一。
最后,我对一幅相比之下空间分辨率更高的用于军事的高光谱图像进行了部分改进的分析操作,以便比较分类效果。
2024/9/20 12:52:57 2.28MB ENVI 地物识别
1
方便新手实例化练习,里面有很多实验数据和实验步骤方法,十分详细,对新手很适合。
2024/9/4 18:16:19 28.36MB 重庆 shape文件
1
在IT行业中,二次开发是指基于现有软件产品进行的定制化改造和功能扩展,以满足特定用户或场景的需求。
本主题聚焦于"RADIOSS"软件的材料二次开发,这是一个涉及计算流体动力学(CFD)和结构力学的高级仿真工具。
RADIOSS,全称“ResponseofDIscreteObejctstoSHock”,是由Altair公司提供的一个非线性有限元分析(FEA)解决方案,广泛应用于汽车、航空、航天、机械等工程领域。
材料二次开发在RADIOSS中扮演着至关重要的角色。
它涉及到对软件中原有的材料模型进行改进或者新增自定义材料模型,以更好地模拟真实世界中的各种复杂材料行为。
例如,对于金属材料,可能需要考虑塑性变形、蠕变、疲劳等特性;
对于复合材料,可能需要处理层合结构、纤维方向依赖性等问题。
1.**材料模型的分类**:RADIOSS支持多种材料模型,包括线性弹性、塑性、粘塑性、弹塑性、超弹性、蠕变、损伤、疲劳等。
二次开发可能涉及增强这些模型,或者引入新的模型来适应特定应用。
2.**材料参数定义**:在二次开发中,需要精确定义材料参数,如弹性模量、泊松比、屈服应力、硬化参数等,这通常需要参考实验数据或材料供应商提供的信息。
3.**自定义材料模型**:有时候,标准材料模型无法满足特定工程问题的需求,这时就需要编写自定义材料子程序,利用RADIOSS的用户子程序接口(如umat或pumat)实现。
这些子程序需要考虑材料的力学行为,如应变率依赖性、温度依赖性等。
4.**材料库的扩展**:通过二次开发,可以构建自己的材料数据库,方便在不同项目中复用,提高分析效率。
同时,这也有助于保持材料参数的一致性和准确性。
5.**编程技能**:进行RADIOSS的材料二次开发,通常需要掌握Fortran或C++语言,因为这是RADIOSS用户子程序接口所支持的语言。
此外,理解有限元方法和材料力学也是必要的。
6.**验证与校核**:开发新的材料模型后,必须通过与实验数据的对比或与其他成熟软件的结果比较来进行验证,确保其准确性和可靠性。
7.**应用实例**:在汽车碰撞模拟、航空航天结构耐久性分析、压力容器的安全评估等领域,材料二次开发可以帮助工程师更准确地预测结构响应,从而优化设计,降低成本。
RADIOSS的材料二次开发是一个技术含量高、实践性强的工作,它结合了理论力学、材料科学和编程技能,旨在提供更贴近实际的仿真结果。
对于希望提升仿真精度和效率的工程师来说,这是一个值得深入研究的领域。
通过阅读"二次开发_RADIOSS-材料二次开发.pdf"这份资料,可以系统学习和掌握相关知识。
2024/9/1 16:59:41 326KB
1
压缩文件中包含一下列表:1,movielens公开实验数据集(推荐系统研究经常用到~)2,模拟预测评分的python代码(python3.x)希望对大家学习有所帮助。
有问题可以邮箱联系。
2024/8/27 6:10:45 4.53MB code
1
共 123 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡