在开始谈我对架构本质的理解之前,先谈谈对今天技术沙龙主题的个人见解,千万级规模的网站感觉数量级是非常大的,对这个数量级我们战略上要重视它,战术上又要藐视它。
先举个例子感受一下千万级到底是什么数量级?现在很流行的优步(Uber),从媒体公布的信息看,它每天接单量平均在百万左右,假如每天有10个小时的服务时间,平均QPS只有30左右。
对于一个后台服务器,单机的平均QPS可以到达800-1000,单独看写的业务量很简单。
为什么我们又不能说轻视它?第一,我们看它的数据存储,每天一百万的话,一年数据量的规模是多少?其次,刚才说的订单量,每一个订单要推送给附近的司机、司机要并发抢单,后面业务场景的访问量往
1
英文原版,英文好的可以看一下良好的理论分析特性,高效的实际可计算性和强大的建模能力是大家选择凸建模的原因。
注意,我这里说的是凸建模!科学研究的第一步是对实际问题抽象近似,建模成数学问题,这里有巨大的选择自由度!虽然非凸建模具有最强的表达能力,也最省事,代价却是理论上难以分析和实际中无法可靠计算!近十年来火的一塌糊涂的压缩感知,稀疏表示和低秩恢复都是由凸建模带动起来的!研究者们通过分析凸问题的性质来解释和理解真实世界的机理!要注意,很多这样的问题几十年前就已经有非凸的表达形式了,只有用凸建模才焕然一新!更进一步,通过对凸建模的深入理解,大家对具体的非凸问题,注意不是所有,开始利用特殊的结构特点做分析,得出了一些很深刻的结果,比如神经网络收敛到局部最优解,而不是平稳点,随机算法有助于逃离鞍点。
但是,非凸分析几乎都是casebycase,没有统一有效的手段,这与凸分析差别甚大。
从这个角度来说,凸建模和凸优化是研究实际问题的首选!作者:知乎用户链接:https://www.zhihu.com/question/24641575/answer/136736625来源:知乎著作权归作者所有。
商业转载请联系作者获得授权,非商业转载请注明出处。
2025/3/6 4:58:51 5.74MB 凸优化
1
乐优商城源码:leyou-registerleyou-gategayleyou-search等
2025/3/1 19:12:30 14.26MB IT
1
遗传算法(GeneticAlgorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。
遗传算法可以解决多种优化问题,如:TSP问题、生产调度问题、轨道优化问题等,在现代优化算法中占据了重要的地位,本例使用遗传算法求解最优解。
2025/3/1 1:10:51 5KB 遗传算法
1
参考文献:徐德民,《鱼雷控制系统计算机辅助分析设计与仿真》,西北工业大学出版社,19991、变结构垂直命中制导律2、PID偏航角速率控制系统:单位斜坡输入稳态误差=0.1,增益截止频率6rad/s,相位裕度80°3、偏航角速率开环传递函数:G(s)=G1(s)*G2(s)=1/(0.05s+1)*(1.883s+3.875)/(s^2+6.734s+4.665)4、带滤波、导航环节,稍微修改即可进行滤波算法、导航算法的运算5、程序使用说明:(1)首先运行Start.m,进行参数初始化;
(2)运行VscGuideSIMULINK模型;
(3)最后执行PlotResult.m,输出结果。
byappe1943@XJTUMATLAB版本:Matlab7.0(R2009a).目录1鱼雷侧向运动分析2鱼雷侧向运动控制器的设计2.1Ziegler—Nichols方法设计PID控制器2.2解析方法设计PID控制器2.3解析方法设计PD控制器2.4超前补偿控制器设计2.4.1超前补偿的Bode图设计方法2.4.2超前补偿器设计的解析方法2.5PD控制器与超前补偿器的比较3滚转通道滞后补偿器设计3.1滞后补偿器的Bode图设计方法3.2滞后补偿器设计的解析方法3.3PI控制器与滞后补偿器的比较4鱼雷偏航角速率控制系统的设计5鱼雷纵向运动控制器设计5.1定深控制5.2定角控制6概述7用极点配置方法设计鱼雷控制系统7.1第一种极点配置方法7.2第二种极点配置方法:Ackermann法8全维观测器设计9降维观测器设计10线性二次型最优控制理论设计控制系统10.1连续系统二次型调节器问题的求解10.2最优输出跟踪11鱼雷大制导回路仿真12参考文献
2025/2/26 10:34:20 1.66MB 控制系统 鱼雷 matlab simulink
1
前言1引言11.1什么是操作系统?31.1.1所有延长机器的作业系统41.1.2作为一个资源管理器的作业系统61.2操作系统的历史71.2.1第一代(1945年至1955年)真空管71.2.2第二代(1955年至1965年)晶体管和批处理系统81.2.3第三代(1965年至1980年)的集成电路101.24第四代(1980年至今)个人电脑151.3计算机硬件检查19l.3.1处理器191.3.2内存231.3.3磁盘261.3.4胶带271.3.5I/O设备27(I/O即输入输出)1.3.6总线3013.7启动计算机331.4操作系统动物园331.4.1大型机操作系统341.4.2服务器操作系统341.4.3多处理器的操作系统341.4.4个人电脑操作系统351.4.5掌上电脑操作系统351.4.6嵌入式操作系统.351.4.7传感器节点的操作系统361.4.8实时操作系统361.4.9智能卡操作系统371.5操作系统的概念371.5.1流程381.5.2地址空间401.5.3文件401.5.4输入/输出431.5.5保护441.5.6壳牌441.5.7系统发育个体发育重演461.6系统调用491.6.1流程管理系统调用521.6.2文件管理系统调用561.6.3目录管理系统调用571.6.4杂项系统调用581.6.5在Windows的Win32API591.7操作系统结构621.7.1单片系统621.7.2分层系统631.7.3微内核641.7.4客户-服务器模型671.7.5虚拟机671.7.6出的内核711.8根据C的WORLD721.8.1C语言721.8.2头文件731.8.3大的编程项目741.8.4运行时模型751.9操作系统上的研究761.10本书的其余部分的概要771.11公制单位781.12概要792进程和线程2.1工序832.1.1过程模型842.1.2进程创建862.1.3进程终止882.1.4流程层次结构892.1.5进程国家902.1.6实施流程912.1.7多多建模的建模932.2螺纹952.2.1线程使用情况952.2.2古典的线程模型1002.2.3POSIX线程1042.2.4在用户空间中实现的线程1062.2.5在内核中实现的线程1092.2.6混合实现1102.2.7调度激活1112.2.8弹出式线程1122.2.9使单线程代码中使用多线程技术1142.3进程间通信1172.3.1静态条件1172.3.2关键区域1192.3.3忙等待的互斥1202.3.4睡眠和唤醒1252.3.5信号灯1282.3.6互斥1302.3.7显示器1342.3.8消息传递1402.3.9壁垒1442.4调度1452.4.1调度1452.4.2批处理系统的调度1522.4.3调度互动系统1542.4.4调度实时系统1602.4.5政策与机制1612.4.6线程调度1622.5经典的IPC问题1632.5.1哲学家就餐问题1642.5.2读者和作者的问题1672.6进程和线程的研究1682.7概要169习题95  第3章存储管理99  3.1无存储器抽象99  3.2一种存储器抽象:地址空间101  3.2.1地址空间的概念101  3.2.2交换技术103  3.2.3空闲内存管理104  3.3虚拟内存106  3.3.1分页107  3.3.2页表108  3.3.3加速分页过程109  3.3.4针对大内存的页表111  3.4页面置换算法113  3.4.1最优页面置换算法114  3.4.2最近未使用页面置换算法114  3.4.3先进先出页面置换算法115  3.4.4第二次机会页面置换算法115  3.4.5时钟页面置换算法116  3.4.6最近最少使用页面置换算法116  3.4.7用软件模拟lru117  3.4.8工作集
2025/2/26 1:24:41 84.5MB 操作系统
1
广工anyview的参考答案,不一定最优,后期将推出更完善版本。
2025/2/23 0:54:38 100KB anyview 参考答案
1
jsf中文文档与sybase中文文档,jsf与sybase现在都已经比较小众了,希望用到的朋友能够方便的开发。
其中jsf包含组件介绍以及使用,sybase中有一些使用技巧,比如分页以及性能测试调优。
2025/2/20 0:04:21 1.2MB jsf sybase
1
matlab数学建模物资配送模型求解,最优配送方式选择
2025/2/12 15:27:48 4KB 物资配送 matlab 数学建模
1
CDH性能调优,CDH热点问题分析,安装注意事件
2025/2/5 15:39:53 1.65MB CDH性能调优
1
共 796 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡