recommendation_engines.pyRecommenders.py推荐系统.ipynb
2025/7/3 9:25:19 195KB 音乐推荐系统
1
Python交你如何绘制一朵玫瑰花
2025/7/2 7:51:55 2KB python
1
重写覆盖原模型中使用的cpu_nms.pyx,解决碰到的ModuleNotFoundError:Nomodulenamed'utils.nms.cpu_nms'报错
2025/7/2 3:21:54 1004B cpu_nms pytorch
1
Python处理文件夹下图片,将一张图片分割成若干张并保存,文件夹内批量处理
2025/6/28 9:26:49 2KB python 批量处理 裁剪分割图片
1
kmeans.py,python算法之Kmeans聚类分析
2025/6/24 21:24:07 2KB Kmeans 聚类 python 可运行
1
decode-the-morse-code-for-real-passedCodewar题解
2025/6/22 22:32:23 7KB 题解 codewar
1

在IT行业中,测试是软件开发过程中的重要环节,确保产品的质量和稳定性。
本次我们将探讨一个名为"Testing_Balloonicorn-s_Party"的项目,它似乎是一个以Python编程语言为基础的测试框架或者测试用例集。
从标题来看,可能是一个与某个特定事件或主题相关的测试项目,比如一个庆祝活动或者游戏,而"Balloonicorn"可能是这个项目中的虚构角色或者代号。
Python作为一门强大的编程语言,被广泛应用于自动化测试,尤其在Web应用、API接口以及单元测试等方面。
Python有丰富的测试库支持,如unittest、pytest和behave等,它们提供了结构化的测试编写方式和方便的断言方法,帮助开发者高效地进行测试工作。
1. **unittest**: Python的标准测试框架,提供类级别的组织结构,可以创建测试套件,支持参数化测试,且与面向对象编程紧密结合。
在"Testing_Balloonicorn-s_Party"项目中,可能会看到(unittest.TestCase)类的继承,以及各种test_开头的方法来定义测试用例。
2. **pytest**: 相比unittest,pytest更加灵活和强大,支持自定义断言、更简单的测试发现机制和更丰富的插件生态。
项目可能使用了pytest来编写测试,利用其内置的fixture功能来管理测试环境和数据,以及pytest.mark.xfail和pytest.raises等标记来处理预期失败和异常情况。
3. **测试驱动开发(TDD)**: 在这个项目中,可能会遵循TDD原则,即先编写测试,再编写能通过这些测试的代码。
这样可以确保每个功能都有对应的测试覆盖,提高代码质量。
4. **模拟对象(Mocking)**: 测试过程中,为了隔离测试,避免依赖外部资源或服务,可能会使用mock对象来代替真实的依赖。
Python的unittest.mock库提供了一套强大的模拟工具,可以创建模拟函数、类或模块,以便于控制测试行为。
5. **覆盖率报告**: 测试完成后,通常会生成覆盖率报告来评估测试的全面性。
Python有coverage.py库用于计算测试覆盖率,帮助开发者了解哪些代码段未被测试到。
6. **持续集成/持续部署(CI/CD)**: 如果项目规模较大,可能会结合Jenkins、GitLab CI/CD或Travis CI等工具进行自动化测试,每次代码提交都会触发构建和测试流程,确保代码质量。
7. **测试自动化**: 除了手动编写的测试用例,Python的selenium库可用于Web UI自动化测试,requests库可以处理HTTP请求的接口测试。
如果"Balloonicorn-s_Party"涉及到用户界面或API交互,这些工具可能被使用到。
在"Testing_Balloonicorn-s_Party-master"的压缩包中,可能包含了测试脚本、配置文件、测试结果报告以及必要的资源文件。
解压并研究这些内容,我们可以更深入地了解项目的具体测试策略和实现细节。
无论是为了学习Python测试,还是为了维护和改进这个项目,对这些知识点的理解都是至关重要的。
2025/6/20 8:27:41 4KB
1
网易藏宝阁自动收藏pyhon脚本,根据代码内容修改自己需要刷收藏量的商品链接,再添加对应网易邮箱小号文件即可
2025/6/17 6:50:03 3KB python
1
爬虫实例,获取当当网top500书籍python源码,下载后pipinstallrequests,执行这个文件即可
2025/6/16 14:43:25 2KB python 爬虫 源码
1

误差反向传播(Backpropagation,简称BP)是深度学习领域中最常见的训练人工神经网络(Artificial Neural Network,ANN)的算法。
它主要用于调整网络中权重和偏置,以最小化预测结果与实际值之间的误差。
在本项目中,我们看到的是如何利用BP算法构建一个两层神经网络来识别MNIST手写数字数据集。
MNIST数据集包含60,000个训练样本和10,000个测试样本,每个样本都是28x28像素的灰度图像,代表0到9的手写数字。
BP算法通过迭代过程,对每个样本进行前向传播计算预测结果,并使用梯度下降优化方法更新权重,以提高模型在训练集上的表现。
文件"bp_two_layer_net.py"可能包含了实现BP算法的主体代码,它定义了网络结构,包括输入层、隐藏层和输出层。
"net_layer.py"可能是定义神经网络层的模块,包括前向传播和反向传播的函数。
"train_bp_two_neuralnet.py"很可能是训练脚本,调用前面的网络和训练数据,执行多次迭代以优化权重。
"buy_orange_apple.py"、"layer_naive.py"、"gradient_check.py"和"buy_apple.py"这四个文件的名称看起来与主题不太直接相关,但它们可能是辅助代码或者示例程序。
"buy_orange_apple.py"可能是一个简单的决策问题,用于帮助理解基本的逻辑操作;
"layer_naive.py"可能包含了一个基础的神经网络层实现,没有使用高级库;
"gradient_check.py"可能是用来验证反向传播计算梯度正确性的工具,这对于调试深度学习模型至关重要;
而"buy_apple.py"可能是另一个类似的小示例,用于教学或练习目的。
在BP算法中,计算图的概念很重要。
计算图将计算过程表示为一系列节点和边,节点代表操作,边代表数据。
在反向传播过程中,通过计算图的反向遍历,可以高效地计算出每个参数对损失函数的影响,从而更新参数。
在深度学习中,神经网络的优化通常依赖于梯度下降算法,它根据梯度的方向和大小来更新权重。
对于大型网络,通常采用随机梯度下降(Stochastic Gradient Descent, SGD)或其变种,如动量SGD、Adam等,以提高训练速度和避免局部最优。
总结来说,这个项目涉及了误差反向传播算法在神经网络中的应用,特别是在解决MNIST手写数字识别问题上的实践。
通过理解和实现这些文件,我们可以深入理解BP算法的工作原理,以及如何在实际问题中构建和训练神经网络。
同时,它也展示了计算图和梯度检查在深度学习模型开发中的关键作用。
2025/6/15 20:24:19 5KB
1
共 506 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡