《多智能体系统的协同群集运动控制》以多智能体系统协同群集运动控制为主线,首先介绍了图论和控制器设计所用到的基础理论知识;
其次,分别从拓扑结构的边保持和代数连通度两个角度介绍了连通性保持条件下的协同群集运动控制协议设计方法;
进而,针对典型的轮式移动机器人非完整约束模型介绍了连通性保持条件下的协同控制策略,为简化系统复杂拓扑结构,还介绍了基于骨干网络提取的协同群集运动控制策略;
书中将个体动态模型提升到高阶非线性系统模型,介绍了高阶非线性系统协同控制协议设计方法;
最后,针对多智能体系统非合作行为检测与隔离进行了详细介绍,并提出了相关算法。
2023/12/22 10:08:09 40.58MB 多智能体 运动控制 协同
1
虽然均值哈希更简单且更快速,但是在比较上更死板、僵硬。
它可能产生错误的漏洞,如果有一个伽马校正或颜色直方图被用于到图像。
这是因为颜色沿着一个非线性标尺-改变其中“平均值”的位置,并因此改变哪些高于/低于平均值的比特数。
一个更健壮的算法叫pHash,(我使用的是自己改进后的算法,但概念是一样的)pHash的做法是将均值的方法发挥到极致。
使用离散余弦变换(DCT)降低频率。
1
Matlab拟牛顿法以及实例,内附拟牛顿法函数程序,可用于求解非线性方程组
2023/12/19 22:36:30 756B Matlab
1
前言第1章概述1.1宽带无线移动通信系统的发展1.2功率放大器线性化技术简介1.2.1国内外研究现状1.2.2本书的创新性工作1.3本书结构安排第2章功率放大器数学模型2.1功率放大器非线性效应分析2.2非线性效应基带等效分析2.3无记忆功率放大器典型模型2.3.1Saleh模型2.3.2Rapp模型2.3.3多项式模型2.4宽带功率放大器记忆效应分析2.5有记忆功率放大器模型2.5.1Volterra模型2.5.2多项式模型2.5.3Wiener模型2.5.4Hammerstein模型2.5.5并行Hammerstein模型2.5.6神经网络模型2.6本章小结第3章功率放大器非线性对传输信号的影响3.1非线性的时域及频域分析3.1.1谐波失真3.1.2互调失真3.1.3交调失真3.1.4AM/AM和AM/PM畸变3.2功率放大器非线性对多载波信号功率谱的影响3.2.1无记忆模型功率谱的解析表达3.2.2有记忆模型功率谱的解析表达3.2.3仿真及分析3.3功率放大器非线性对多载波信号符号率的影响3.3.1误符号率的解析表达3.3.2仿真及分析3.4功率放大器非线性评价指标3.4.1分贝压缩点功率3.4.2三阶互调系数3.4.3三阶截断点3.4.4交调系数3.4.5输入及输出回退3.4.6系统性能总损耗3.5本章小结第4章宽带功率放大器预失真技术简介4.1数字预失真技术综述4.2预失真技术基本原理4.3非自适应性预失真技术4.3.1方案概述4.3.2特性曲线的测量4.4射频自适应预失真技术4.5中频自适应预失真技术4.6基带自适应数字预失真技术4.7本章小结第5章宽带功率放大器预失真估计结构5.1直接学习结构5.2间接学习结构5.2.1基于IDLA的新算法5.2.2仿真及分析5.3本章小结第6章基于查询表的数字预失真6.1查询表预失真方法综述6.1.1查询表形式6.1.2查询表的指针方式6.1.3查询表地址索引方式6.1.4查询表自适应算法6.1.5查询表预失真方法的不足6.2无记忆查询表预失真方法6.2.1常规查询表预失真算法6.2.2改进的查询表预失真方法6.3有记忆查询表预失真方法6.3.1一维查询表预失真方法6.3.2二维查询表预失真方法6.4本章小结第7章基于多项式的数字预失真7.1多项式预失真方法综述7.1.1多项式模型7.1.2多项式自适应算法7.1.3多项式预失真方法的不足7.2多项式形式的选择7.2.1预失真多项式形式7.2.2正交多项式模型7.3无记忆多项式预失真方法7.3.1分段无记忆多项式预失真方法7.3.2直接学习结构递推系数估计方法7.3.3间接学习结构系数估计方法7.3.4正交多项式预失真方法7.3.5动态系数多项式预失真方法7.4有记忆多项式预失真方法7.4.1分段有记忆多项式预失真方法7.4.2归一化最小均方系数估计方法7.4.3广义归一化梯度下降系数估计方法7.4.4广义记忆多项式预失真方法7.4.5分数阶记忆多项式预失真方法7.4.6Hammerstein预失真方法7.5本章小结第8章宽带功率放大器预失真方案设计8.1数字预失真系统设计8.2反馈环路延迟估计8.2.1常规环路延迟估计方法8.2.2提出的环路延迟估计方法8.2.3仿真分析8.3PAPR降低技术与预失真8.3.1问题引出8.3.2PAPR降低技术8.3.3限幅对OFDM信号预失真性能的影响8.3.4PAPR降低技术与PA线性化的内在联系8.4宽带功率放大器的有效阶估计8.5关于硬件实现8.5.1非自适应预失真硬件实现8.5.2自适应数字预失真硬件实现8.6宽带功率放大器预失真新理论与技术8.6.1功率放大器预失真新理论8.6.2功率放大器预失真新技术8.7本章小结参考文献附录A符号表附录B缩略语
2023/12/19 1:19:29 18.5MB 预失真
1
具有随机测量丢包的非线性切换离散时间系统的网络迭代学习控制
2023/12/18 1:16:56 988KB 研究论文
1
本资源提供了一个自动驾驶汽车程序启动扩展卡尔曼滤波项目C++代码。
所谓扩展卡尔曼滤波器,就是适用于非线性系统的卡尔曼滤波器,可以更广泛的应用在项目中。
2023/12/16 17:13:19 2.54MB 扩展卡尔曼滤 卡尔曼滤波 C++
1
提出一种基于改进重复控制器(modifiedrepetitivecontroller,MRC)的三相四线逆变器设计方法,能够有效抑制非线性负载对输出电压的扰动。
为解决重复控制器稳定性和控制性能之间的矛盾,在其补偿环节增加自由度-零相位滤波器;以误差衰减速率和滤波器的复杂度为优化目标,以系统鲁棒稳定性为约束,给出基于微粒群优化方法的零相位滤波器优化设计,构建基于鲁棒优化零相位滤波器的MRC。
该MRC的优化设计考虑了系统的未建模误差,具有鲁棒性,更便于工业应用。
三相四线逆变器采用载波调制,最大化利用直流电压,无需复杂的数据处理,易于实现。
理论分析和试验结果证明了三相四线逆变器的MRC及其优化设计方法的有效性和可行性。
1
使用支持向量机进行非线性回归,得到非线性函数y=f(x1,x2,…,xn)的支持向量解析式
2023/12/3 16:12:48 7KB SVM,NLP
1
实验一线性典型环节实验;
实验二二阶系统的性能研究;
实验三系统时域分析实验;
实验四二阶系统的性能频域研究;
实验五校正实验;
实验六非线性典型环节实验;
实验七非线性系统实验。
1
第1章p神经网络的数据分类——语音特征信号分类1第2章bp神经网络的非线性系统建模——非线性函数拟合11第3章遗传算法优化bp神经网络——非线性函数拟合21第4章神经网络遗传算法函数极值寻优——非线性函数极值寻优36章基于bp_adaboost的强分类器设计——财务预警建模45章pid神经元网络解耦控制算法——多变量系统控制54章rbf网络的回归——非线性函数回归的实现65章grnn的数据预测——基于广义回归神经网络的货运量预测73章离散hopfield神经网络的联想记忆——数字识别81章离散hopfield
2023/11/30 12:27:01 8.26MB MATLAB 神经网络 案例 分析
1
共 710 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡